
Chapter 3

Solving Systems of Linear
Equations By Gaussian
Elimination

3.1 Mathematical Preliminaries

In this chapter we consider the problem of computing the solution of a
system of n linear equations in n unknowns. The scalar form of that
system is as follows:
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Written in matrix form, (S) is equivalent to:

(3.1) Ax = b,

where the coe�cient square matrix A 2 Rn,n, and the column vectors x, b 2
Rn,1 ⇠= Rn. Specifically,
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We assume that the basic linear algebra property for systems of linear equa-
tions like (3.1) are satisfied. Specifically:

Proposition 3.1. The following statements are equivalent:

1. System (3.1) has a unique solution.

2. det(A) 6= 0.

3. A is invertible.

In this chapter, our objective is to present the basic ideas of a linear system
solver. It consists of two main procedures allowing to solve e�ciently (3.1).

1. The first, referred to as Gauss elimination (or reduction) reduces
(3.1) into an equivalent system of linear equations, which matrix is
upper triangular. Specifically one shows in section 4 that

Ax = b() Ux = c,

where c 2 Rn and U 2 Rn,n is given by:
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Thus, u
ij

= 0 for i > j. Consequently, one observes that A is invertible
if and only if
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2. The second procedure consists in solving by back substitution the
upper triangular system

(3.2) Ux = c.
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A picture that describes the two steps of the linear solver is:

Input A, b! Gauss Reduction ! Output U, c! Back Substitution ! Output x

Our plan in this chapter is as follows. We start in section 2 by discussing
issues related to computer storage. It is followed in section 3 by the pre-
sentation of the back substitution procedure that solves upper triangular
systems, such as (3.2). Finally in section 4 we present various versions of
Gauss reduction, the simplest of which is Naive Gaussian elimination.

3.2 Computer Storage for matrices. Data Struc-
tures

The data storage for A and b is through one data structure: the augmented
matrix AG 2 Rn,n+1, given by:
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We generally assume that the matrix A is a full matrix, that is “most of its
elements are non-zero”. Storing the augmented matrix AG for a full matrix
in its standard form, would then require N = n⇥ (n+1) words of computer
memory. If one uses single precision, 4N bytes would be necessary, while
using double precision would necessitate 8N bytes for that storage.
For instance, when the matrix size is n = 2k, the computer memory for
double precision computation should exceed N = 8⇥ 2k(2k +1) ⇡ O(22k+3)

bytes.
The following table illustrates some magnitudes of memory requirements.

k n = 2k N = n⇥ (n+ 1) ⇡in Megabytes
IEEE single precision IEEE double precision

3 8 72 2.7⇥ 10�4 5.5⇥ 10�4

6 64 4160 1.6⇥ 10�2 3.2⇥ 10�2

8 256 65792 0.25 0.5
10 1024 1049600 4 8
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Practically, computer storage is usually one-dimensional. As a result,
matrix elements are either stored column-wise (as in MATLAB), or row-
wise. In the case where the elements of the augmented matrix AG are
contiguously stored by columns, this storage would obey the following se-
quential pattern:
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while if stored by rows, the storage pattern for the augmented matrix ele-
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Once Gauss reduction has been applied to the original system Ax = b, the
resulting upper triangular system Ux = c would necessitate the storage of
the upper triangular matrix U and the right hand side vector c. Obviously,
the augmented matrix for this system is given by:

UG =

0

B

B

@

u
11

u
12

... ... u
1n

c
1

0 u
22

... ... u
2n

c
2

... ... ... ... ... ...
0 ... ... 0 u

nn

c
n

1

C

C

A

Since by default, the lower part of the matrix U consists of zeros, this part
of the storage shall not be waisted but used for other purposes, particularly
that of storing the multiplying factors, which are essential parameters to
carry out Gauss elimination procedure. Hence, at this stage we may consider
the data structure UG whether stored by rows or by columns as consisting
of the elements of U and c and unused storage space:
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We turn now to the Back substitution procedure.
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3.3 Back Substitution for Upper Triangular Sys-
tems

Although this procedure comes after the completion of the Gauss Reduction
step, we shall deal with it from the start. It indeed provides the importance
of this global approach.
Considering (3.2) in its scalar form, with all diagonal elements u

ii

6= 0, gives:
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Solving this system by the back substitution procedure reduces such pro-
cedure to solving n equations, each one in one unknown only.
We give two versions of the back-substitution process: the first one is col-
umn oriented, while the second one is row oriented. We then evaluate
and compare the computational complexity of each version.

1. Column-version: The two main steps are as follows:

(a) Starting with j = n : �1 : 1, solve the last equation for x
j
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x
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(b) In all rows above, that is from row i = 1 : (j � 1), compute
the new right hand side vector that results by ”shifting” the last
column of the matrix (terms in x

j

) to the right hand side. For
example when j = n, the new system to solve at this step is as
follows:
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This process is repeated till the 1st row is reached, where:
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The corresponding algorithm is implemented as follows:

function x = ColBackSubstitution(U,c)

% Input: U an upper-triangular invertible matrix, and

% c a column vector

% Output: solution vector x of system Ux = c

% Storage is column oriented

n=length(c) ;

for j=n:-1:1

x(j)=c(j)/U(j,j);

for i=1: j-1

c(i)=c(i) - U(i,j) * x(j);

end

end

The number of floating point operations used in this algorithm is n2,
and is computed as follows:

• For every j, (j = 1 : n): 1 division is needed to compute x(j)
adding up therefore to a total of n flops.

• For every j, (j = 1 : n) and for every i, (i = 1 : j � 1), to
compute each modified right hand side term c(i): 1 addition + 1
multiplication are used, that sum up to a total of:

n

X
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X

i=1

2 =
n

X

j=1

2[(j � 1)� 1 + 1] = 2(1+2+...+(n�1)) = n(n�1)

As for the 2nd version, the rows are successively and completely solved
for one unknown, starting with the last one (i = n).

2. Row-version:

% Input and Output as in "ColBackSubstitution" above

% Storage is row oriented

function x = RowBackSubstitution(U,c)
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n=length(c);

x(n)=c(n)/U(n,n);

for i=n-1:-1:1

for j=i+1:n

c(i)=c(i)-U(i,j) * x(j);

end

x(i)=c(i)/U(i,i);

end

It is easy to verify in that case that the total number of flops used remains
equal to n2 .

3.4 Gauss Reduction

Our starting point is to assume “ideal mathematical conditions” allowing to
carry the reduction without any safeguard. Before setting formally these
assumptions, we work out the following example:

Example 3.1. Consider the reduction of the following system into upper
triangular form :

(3.3)
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The corresponding augmented matrix being:
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We proceed by applying successively 3 Gauss reductions. In each one of
these, the following linear algebra elementary operation is being used:
at the kth reduction, k = 1, 2, 3, and for i = k + 1, ..., 4

(3.4) (New) Equ i (Previous) Equ i� (multiplier)⇥ Pivot Equ k

More explicitly:
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1. Reduction 1. The pivot equation is the 1st equation (k = 1), the
pivot element is a

11

= 1. The respective multipliers for i succes-
sively 2, 3, 4 are { a

1i

a

11

= 3, 5, 4}. Thus, performing (3.4) repeatedly:

Equation 2 Equation 2� 3⇥ Pivot Equation 1,

Equation 3 Equation 3� 5⇥ Pivot Equation 1,

Equation 4 Equation 4� 4⇥ Pivot Equation 1,

At this stage, the modified augmented matrix is:
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In order not to waste the implicitly zero storage locations, we use
them to place the multipliers of the first reduction. Hence, at the
accomplishment of reduction 1, the augmented matrix takes the form:
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with the understanding that “boxed” elements are the corresponding
multipliers.

2. Reduction 2. Perform repeatedly operation (3.4) with the second
pivot equation (k = 2), the pivot element being here a
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= 5, and i
successively 3,4. The multipliers are respectively { a
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Equation 3 Equation 3� 13

5
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Equation 4 Equation 4� 6

5
⇥ Equation 2,
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The 2nd reduction yields the following augmented matrix:
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Adding the multipliers of the second reduction, the contents of the
augmented matrix updated data structure are as follows:
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Finally, we come to the last reduction.

3. Reduction 3. Perform operation (3.4) with the third pivot equa-
tion (k = 3), the pivot element being a
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Placing the multipliers, the updated augmented matrix is then:
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The Back Substitution applied on the upper triangular system yields:

(x
1

= �217/30, x
2

= 17/15, x
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4

= 9/2)
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Wemay now discuss the assumptions leading to the Naive Gauss elimination.

3.4.1 Naive Gauss Elimination

The adjective Naive applies because this form is the simplest form of Gaus-
sian elimination. It is not usually suitable for automatic computation unless
essential modifications are made. We give first the condition that allows the-
oretically the procedure to work out successfully.

Definition 3.1. A square matrix A
n
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if all its principal sub-matrices A
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If a matrix A verifies Definition 3.1, the pivot element at each reduction
is well defined and is located on the main diagonal. Thus, 8b 2 Rn,1, the
following algorithms can be applied on the augmented matrix [A|b]. The
first one assumes that the matrix A is stored column-wise.

% The algorithm is column oriented

% The matrix A is assumed to have the principal minor property

% At reduction k, the kth equation is the pivot equation, A(k,k)

% is the pivot element, and equations 1,..,k remained unchanged

function[U, c]=NaiveGauss(A,b)

n=length(b) ;

for k=1:n-1

% Get the pivot element and the multipliers proceeding by columns

piv=A(k,k);

for i=k+1:n

A(i,k)=A(i,k)/piv;

end

% Modify the body of matrix A proceeding by columns

for j=k+1:n

for i=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);

end

end
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% Modify the right hand side b

for i=k+1:n

b(i)=b(i)-A(i,k)*b(k);

end

end

% Extract c and U proceeding by columns

c=b;

U=triu(A);

The flop count for this algorithm can be easily evaluated:
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6
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3
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The next version requires the same number of flops but is row oriented

% The algorithm is row oriented

% The matrix A is assumed to have the principal minor property

% At reduction k, the kth equation is the pivot equation and A(k,k)

% is the pivot element, and equations 1,..,k remained unchanged

function[c,U]=naiveGauss(A,b)

n=length(b) ;
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for k=1:n-1

% Get the pivot element

piv=A(k,k);

% Proceed by row: get the multiplier for equation i

for i=k+1:n

A(i,k)=A(i,k)/piv;

% and modify its remaining coefficients, then its right hand side

for j=k+1:n

A(i,j)=A(i,j)-A(i,k)*A(k,j);

end

b(i)=b(i)-A(i,k)*b(k);

end

end

% Extract c and U

c=b;

U=triu(A);

The above 2 versions that are the simplest expressions of Gaussian elimi-
nation, do not take into account the eventual sensitivity of the system to
propagate round-o↵ errors.

3.4.2 Partial Pivoting strategies: Unscaled (Simple) and Scaled
Partial Pivoting

When computing in floating point systems F, there are several situations
where the application of the Naive Gaussian elimination algorithms fails
although the matrix A may verify the principal minor property.
As an illustration consider first the case where the pivot element is relatively
small in F. This would lead to large multipliers that worsen the round-o↵
errors, as shown in the following example.

Example 3.2. Consider the following 2⇥ 2 system of equations, where ✏ is
a small non zero number:

(3.5)

⇢

✏x
1

+ x
2

= 2
3x

1

+ x
2

= 1

The exact solution to this problem in R is x
1

⇡ �1

3

and x
2

⇡ 2.
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Naive Gauss elimination where the pivot is ✏ leads to:

⇢
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= 1
(1� 3

✏

)x
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= 1� 6

✏

and the back substitution procedure would give:

(
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1�3/✏

x
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2
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If these calculations are performed in a floating point system F, as 1/✏ is
large, then

⇢

1� 6

✏

⇡ �6

✏

1� 3

✏

⇡ �3

✏

The computed solutions in that case are incorrect, with:

x
2

⇡ 2 and x
1

⇡ 0.

However, if we perform a permutation of the equations before the reduction
process, then the equivalent system becomes :

⇢

3x
1

+ x
2

= 1
✏x

1

+ x
2

= 2

Carried out, Naive Gauss reduction would lead to:

⇢

3x
1

+ x
2

= 1
(1� ✏

3

)x
2

= 2� ✏

3

Back substitution in this case would clearly give: x
2

⇡ 2 and x
1

⇡ �1/3.

This example leads us to conclude that some type of strategy is essential
for selecting new pivot equations and new pivots at each Gaussian reduc-
tion. Theoretically Complete Pivoting would be the best approach. This
process requires at each stage, first searching over all entries of adequate
submatrices - in all rows and all columns - for the largest entry in absolute
value and then permuting rows and columns to move that entry into the
required pivot position. This would be quite expensive as a great amount
of searching and data movement would be involved. However, scanning just
the 1st column in the submatrix at each reduction and selecting as pivot the
greatest absolute value entry accomplishes our goal, thus avoiding too small
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or zero pivots. This is Unscaled (or Simple) Partial Pivoting. It would
solve the posed problem, but compared to Complete Pivoting strategy, it
does not involve an examination of the entries in the rows of the matrix.

Moreover, rather than interchanging rows through the this partial pivoting
procedure, that is to avoid the data movement, we use an indexing array.
Thus, the order in which the equations are used is denoted by the row vec-
tor IV called the Index Vector. At first, IV is set to [1, 2, ..., n], then at
each reduction, if there would be a permutation in the rows, it is performed
only on IV which acts as a vector of pointers to the memory location of the
rows. In fact, at each reduction, IV=[i

1

, i
2

, ..., i
n

] which is a permutation
of the initial vector IV. This definitely eliminates the time consuming and
unnecessary process of moving around the coe�cients of equations in the
computer memory.

We formalize now the Unscaled Partial Pivoting procedure.

1. Gaussian Elimination with Unscaled Partial Pivoting
This strategy consists in first finding at reduction k, the ”best” pivot
equation. This is achieved by identifying the maximum absolute value
element in the kth column, located in some row ranging from the kth

row to the last. More explicitly:
- At reduction k = 1 , seek i

1

in the set {1, 2, ..., n} such that:
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k

+ (k � 1), so that row IV (i
k

) is
the pivot equation and a

IV (ik),k

is the pivot element. Perform then a
permutation of rows IV (k) and IV (i

k

)) in the last IV. Therefore one
writes:

IV ([k, i
k

]) = IV ([i
k

, k])
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As such, in case of e↵ective row permutation, the Naive Gauss Elimi-
nation algorithm is modified as follows:

% The algorithm is column oriented

% At reduction k, a search is made in the kth column (in rows k to n)

% to find the maximum absolute value column element (p=max)

n=length(b);

for k=1:n-1

[p,ik]=max(abs(A(k:n,k)));

% Permutation of rows k and ik is then performed

A([k ik])=A([ik k]);

piv=A(k,k);

....................

If an index vector is referred to, the algorithm proceeds as follows.

function[U,c]=PartialPivotingGauss(A,b)

% An index vector is used to keep track of the location of the rows

n=length(b);

IV=1:n

%At reduction k, find the absolute value maximum column element and its position in IV starting from kth component

for k=1:n-1

[p, ik]=max(abs(A(IV(k:n),k));

% find the position of ik in last IV

ik=ik + k - 1 ;

% Permutation of rows k and ik is then performed through IV

IV([k ik])=IV([ik k]);

% Identify the pivots

piv=A(IV(k),k);

% Find the multipliers

for i=k+1:n

A(IV(i),k)=A(IV(i),k)/piv;

end

% Modify the body of matrix A and right hand side b

for j=k+1:n

for i=k+1:n

A(IV(i),j)=A(IV(i),j)-A(IV(i),k)*A(IV(k),j);

end

end

for i=k+1:n
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b(IV(i))=b(IV(i))-A(IV(i),k)*b(IV(k));

end

%Extract U,c

c=b(IV);

U=triu(A(IV,:));

Example 3.3. Solve the following system using Unscaled Partial Piv-
oting Gaussian reduction.

(3.6)

8

>

>

<

>

>

:

3x
1

�13x
2

+9x
3

+3x
4

= �19
�6x

1

+4x
2

+x
3

�18x
4

= �34
6x

1

�2x
2

+2x
3

+4x
4

= 16
12x

1

�8x
2

+6x
3

+10x
4

= 26

We first initialize the index vector of the system:

IV 1 2 3 4

The augmented matrix for the system above is:

0

B

B

@

3 �13 9 3 �19
�6 4 1 �18 �34
6 �2 2 4 16
12 �8 6 10 26

1

C

C

A

(a) Reduction 1 Seek the pivot equation:

max{3, |� 6|, 6, 12} = 12.

First occurrence of the maximum is the 4th one, i.e. at IV(4)=4
(meaning that at this stage, the 4th component of IV is equa-
tion 4). So, one needs to perform the permutation of rows 1 and
4 through the index vector IV, the pivot equation becoming ef-
fectively equation 4 and the pivot element being 12. Updating
the index vector, computing the multipliers a

IV (i),1

/12, i = 2, 3, 4
and simultaneouslly modifying the body of matrix and right hand
side leads to:

IV 4 2 3 1
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0

B

B

B

B

@

1/4 �11 15/2 1/2 �51/2
-1/2 0 4 �13 �21
1/2 2 �1 �1 3

12 �8 6 10 26

1

C

C

C

C

A

(b) Reduction 2 Similarly, one starts with a search for the pivot
equation:

max
IV (2),IV (3),IV (4)

{|a
IV (2),2

|, |a
IV (3),2

, |a
IV (4),2

|}

= max {|� 11|, 0, 2} = 11

The maximum 11 occurs at IV (4) = 1. Hence we perform the
permutation of Equations IV (2) = 2 and IV (4) = 1. Thus, the
pivot equation is row 1 and the pivot element is �11. Comput-
ing the multipliers and proceeding into the modifications of the
remaining part of the augmented matrix leads to the following
profile of the index vector and of the matrix data:

IV 4 1 3 2

0

B

B

B

B

@

1/4 �11 15/2 1/2 �51/2
-1/2 0 4 �13 �21
1/2 -2/11 4/11 �10/11 �18/11
12 �8 6 10 26

1

C

C

C

C

A

(c) Reduction 3 In this last stage, seek the pivot equation:

max
IV (3),IV (4)

{|a
IV (3),3

|, |a
IV (4),3

|} = max{4, 4/11} = 4.

The maximum 4 occurs at IV (4) = 2. Hence we perform the
permutation of Equations IV (4) = 2 and IV (3) = 3. It is easily
verified at the end of the process the contents of the data structure
are as follows:

IV 4 1 2 3
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0

B

B

B

B

@

1/4 �11 15/2 1/2 �51/2
-1/2 0 4 �13 �21
1/2 -2/11 1/11 3/11 3/11

12 �8 6 10 26

1

C

C

C

C

A

Obviously, back substitution yields:

x
4

= 1, x
3

= �2, x
2

= 1, x
1

= 3

Consider now the special case of a system of equations where the co-
e�cients in a same row have a relatively large variation in magnitude.
Gaussian elimination with Simple Partial Pivoting is not su�cient and
could lead to incorrect solutions as shown in the following example.

Example 3.4. Consider the following 2⇥2 system of equations, where
C is a large positive number.

(3.7)

⇢

3x
1

+ Cx
2

= C
x
1

+ x
2

= 3

The exact solution to this problem in R is x
1

⇡ 2 and x
2

⇡ 1.
Applying the Simple Partial Pivoting Gauss elimination, and since

max{3, 1} = 3

the first row is the pivot equation, the pivot is 3 and the sole multiplier
is 1

3

. This leads to:

⇢

3x
1

+ Cx
2

= C
(1� 1

3

C)x
2

= 3� 1

3

C

where the back substitution procedure gives:
8

<

:

x
2

=
3� 1

3

C

1� 1

3

C

x
1

= C(1�x

2

)

3

If these calculation are performed in a floating point system F with



Gaussian Elimination for linear systems 111

finite fixed precision, and since C is large, then

⇢

3� 1

3

C ⇡ �1

3

C
1� 1

3

C ⇡ �1

3

C

Therefore, the computed solutions would be:

x
2

⇡ 1 and x
1

⇡ 0.

However scaling the rows first then selecting as pivot the scaled abso-
lute value entry, improves the situation. The rowsscales vector being
S = [C, 1], to select the pivot equation, one would compute

max{ 3

C
,
1

1
} = 1

Consequently, in this example, the second row is selected as pivot
equation. Now the pivot is 1 and the multiplier is 3. Carried out, the
scaled partial pivoting Gauss reduction would lead to:

⇢

(C � 3)x
2

= (C � 9)
x
1

+ x
2

= 3

Back substitution in this case would clearly give: x
2

⇡ 1 and x
1

⇡ 2.

In view of this example, a more elaborated version than the Simple
Partial Pivoting would be the Scaled Partial Pivoting, where we
set up a strategy that simulates a scaling of the row vectors and then
selects as a pivot element the relatively largest scaled absolute value
entry in a column. This process would in some way, load balance the
entries of the matrix.
We formalize now this variation of Simple Pivoting strategies.

2. Gaussian Elimination with Scaled Partial Pivoting
In this strategy, scaled values are used to determine the best partial
pivoting possible, particularly if there are large variations in magnitude
of the elements within a row. Besides the index vector IV that is
created to keep track of the equation-permutations of the system, a
scale factor must be computed for each equation. We define the
absolute value maximum element of each row s

i

by:

s
i

= max
1jn

{|a
ij

|} ; 1  i  n
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The column scale vector is therefore: s = [s
1

, s
2

, ..., s
n

]0.
For example in starting the forward elimination process, we do not
arbitrarily use the first equation as the pivot equation as in the Naive-
Gauss elimination, nor do we select the row with maximum absolute
value in the entries of the first column, as in the Simple Partial Pivoting
strategy. Instead we scan first in column 1 the ratios

⇢

|a
i,1

|
s
i

, i = 1, ..., n

�

and select the equation (or row) for which this ratio is greatest. Let
i
1

be the 1st index for which the ratio is greatest, then:

|a
i

1

,1

|
s
i

1

= max
1in

⇢

|a
i,1

|
s
i

�

Interchange i
1

and 1 in the index vector only, which is now IV=[i
1

, i
2

, ...i
n

].
In a similar way, proceed next to further reduction steps. Notice that
through this procedure, the scale factors are computed once. They are
not changed after each pivot step as the additional amount of compu-
tations are not worthwhile.
We give now a version of the newly devised algorithm.

% Initialize IV and seek the scales

IV=1:n ;

for i=1:n

s(i)=max(abs(A(i,1:n))

end

% Alternatively: s=(max(abs(A’)))’

% At reduction k, find the absolute value of maximum scaled column element

for k=1:n-1

[p, ik]=max(abs(A(IV(k:n),k) ./ s(IV(k:n)) ) ;

ik=ik+k-1;

IV([k ik])= IV([ik k]) ;

.........Same as Partial Pivoting..............

As an illustration to the method, let us apply the Scaled Partial Piv-
oting Gaussian reduction on the system of equations of the preceding
example.

Example 3.5.
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We first set the index vector and evaluate the scales of the system:

IV 1 2 3 4

Augmented matrix Scales
3 �13 9 3 �19 13
�6 4 1 �18 �34 18
6 �2 2 4 16 6
12 �8 6 10 26 12

(a) Reduction 1 Seek the pivot equation:

max {3/13, 6/18, 1, 1}.

First occurrence of the maximum is the 3rd one, i.e. at IV(3)=3
(meaning that the 3rd component of IV is equation 3). So, one
needs to perform the permutation of rows 1 and 3 through the
index vector IV, the pivot equation becoming equation 3 and the
pivot element being 6. Updating the index vector and computing
the multipliers a

IV (i),1

/6, i = 2, 3, 4 would yield:

IV 3 2 1 4

Augmented matrix Scales

1/2 �13 9 3 �19 13

-1 4 1 �18 �34 18
6 �2 2 4 16 6

2 �8 6 10 26 12

Modifying the body of matrix and right hand side leads to:

Augmented matrix Scales

1/2 �12 8 1 �27 13

-1 2 3 �14 �18 18
6 �2 2 4 16 6

2 �4 2 2 �6 12

(b) Reduction 2 Similarly to reduction 1, one starts with a search
for the pivot equation:

max
IV (2),IV (3),IV (4)

{
|a

IV (2),2

|
s
IV (2)

,
|a

IV (3),2

|
s
IV (3)

,
|a

IV (4),2

|
s
IV (4)

} = max {2/18, 12/13, 4/12}.
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The maximum 12/13 occurs at IV (3) = 1. Hence we perform the
permutation of Equations IV (2) = 2 and IV (3) = 1. Thus, the
pivot equation is row 1 and the pivot element is �12. Comput-
ing the multipliers and proceeding into the modifications of the
remaining part of the augmented matrix leads to the following
profile of the index vector and of the matrix data:

IV 3 1 2 4

Augmented matrix Scales

1/2 �12 8 1 �27 13

-1 -1/6 13/3 �83/6 �45/2 18

6 �2 2 4 16 6

2 1/3 �2/3 5/3 3 12

(c) Reduction 3 This last step keeps the index vector unchanged

since max
n

| 13

3⇥18

|; | 2

3⇥12

|
o

= 13

3⇥18

. It is easily verified at the end

of the process the contents of the data structure are as follows:

IV 3 1 2 4

Augmented matrix Scales

1/2 �12 8 1 �27 13

-1 -1/6 13/3 �83/6 �45/2 18

6 �2 2 4 16 6

2 1/3 -2/13 �6/13 �6/13 12

Obviously, back substitution yields:

x
4

= 1, x
3

= �2, x
2

= 1, x
1

= 3.

..................................................................................................................................

3.5 LU Decomposition

A major by-Product of Gauss Elimination is the decomposition or fac-
torization of a matrix A into the product of a unit lower triangular
matrix L by an upper triangular one U. We will base our arguments on the
systems of equations (3.3) and (3.6).
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1. First case : Naive Gauss
Going back to (3.3) and on the basis of the multipliers of Naive Gauss
elimination, let L and U be respectively the unit lower and the upper
triangular matrices of the process:

L =

0

B

B

@

1 0 0 0
3 1 0 0
5 13

5

1 0
4 6

5

1

3

1

1

C

C

A

; U =

0

B

B

@

1 �1 2 1
0 5 �5 1
0 0 9 �23/5
0 0 0 �2/3

1

C

C

A

Note that the product LU verifies:
(3.8)
0

B

B

@

1 0 0 0
3 1 0 0
5 13

5

1 0
4 6

5

1

3

1

1

C

C

A

0

B

B

@

1 �1 2 1
0 5 �5 1
0 0 9 �23

5

0 0 0 �2

3

1

C

C

A

=

0

B

B

@

1 �1 2 1
12 �8 6 10
3 2 1 4
4 2 5 3

1

C

C

A

which is precisely:
LU = A.

This identity obeys to the following theorem ([6], [15]):

Theorem 3.1. Let A 2 Rn,n be a square matrix verifying the principal
minor property. If A is processed through Naive Gauss reduction, then
A is factorized uniquely into the product of a unit lower triangular
matrix L and an upper triangular matrix U associated to the reduction
process, with

A = LU

2. Second case: Partial Pivoting
Consider now the Scaled Partial Pivoting reduction applied on (3.6).
Based on the last status of IV = [3, 1, 2, 4], we extract successively the
unit lower and the upper triangular matrices of the process:

L =

0

B

B

@

1 0 0 0
1/2 1 0 0
�1 �1/6 1 0
2 1/3 �2/13 1

1

C

C

A

; U =

0

B

B

@

6 �2 2 4
0 �12 8 1
0 0 13/3 �83/6
0 0 0 �6/13

1

C

C

A
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Computing the product LU gives:

0

B

B

@

1 0 0 0
1/2 1 0 0
�1 �1/6 1 0
2 1/3 �2/13 1

1

C

C

A

0

B

B

@

6 �2 2 4
0 �12 8 1
0 0 13/3 �83/6
0 0 0 �6/13

1

C

C

A

=

0

B

B

@

6 �2 2 4
3 �13 9 3
�6 4 1 �18
12 �8 6 10

1

C

C

A

The product matrix is the matrix A up to a permutation matrix
P = P (IV ), associated to the final status of the index vector . We
write then

LU = P (IV )A

where P is defined as follows:

Definition 3.2. Let I 2 Rn,n, be the identity matrix defined by its
rows, i.e.

I =

0

B

B

@

e
1

e
2

...
e
n

1

C

C

A

Let IV = [i
1

, i
2

, ..., i
n

] be the last status of the index vector through the
Partial Pivoting procedures. The permutation matrix P associated to
IV is a permutation of the identity matrix I, and is given by the row
matrix:

P = P (IV ) =

0

B

B

@

e
i

1

e
i

2

...
e
i

n

1

C

C

A

In example 3.5, the final status of IV = [3, 1, 2, 4]. Thus,

P = P (IV ) =

0

B

B

@

e
3

e
1

e
2

e
4

1

C

C

A

=

0

B

B

@

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

1

C

C

A

Note then that the product:

PA =

0

B

B

@

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

1

C

C

A

0

B

B

@

3 �13 9 3
�6 4 1 �18
6 �2 2 4
12 �8 6 10

1

C

C

A
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is precisely the product LU found above. Hence the LU decomposition
theorem which generalizes Theorem 3.1 stands as follows:

Theorem 3.2. Let a square matrix A 2 Rn,n be processed through partial
pivoting Gauss reduction. If the unit lower triangular matrix L , the upper
triangular matrix U and the index vector IV are extracted from the final
status of the process then:

P (IV )A = LU

where P (IV ) is the permutation matrix associated to the reduction process.

Note also that this decomposition of A is unique.

The LU decomposition or factorization of A is particularly helpful in com-
puting the determinant of A, in solving di↵erent systems of equations
Ax = b, where the coe�cient matrix A is held constant, or also in comput-
ing the inverse of A.

3.5.1 Computing the Determinant of a Matrix

Clearly from theorems 3.1 and 3.2, we conclude respectively that in the first
case

det(A) = det(L)⇥ det(U)

while in the second case

det(A) = (�1)s ⇥ det(L)⇥ det(U)

as det(P ) = (�1)s, s being the number of permutations performed on IV
through the Partial Pivoting procedures.
These results are stated hereafter:

Theorem 3.3. (a) Under the hypothesis of Theorem 3.1,

det(A) =
n

Y

i=1

u
ii

,

(b) Under the hypothesis of Theorem 3.2,

det(A) = (�1)s
n

Y

i=1

u
ii

,
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where u
ii

, , i = 1, ..., n are the diagonal elements of the upper triangular
matrix U associated to the reduction process.

One easily verifies that in example 3.4

det(A) = 1⇥ 5⇥ 9⇥ 2

3
= 30

while in example 3.5:

det(A) = 6⇥ (�12)⇥ 13/3⇥ (�6/13) = 144

since s = 2 .

3.5.2 Computing the Inverse of A

The LU decomposition of a matrix A is also useful in computing its inverse
denoted by A�1 and verifying the property

AA�1 = I

where I is the identity matrix. Let c
j

and e
j

represent respectively the jth

column of A�1 and that of I, then one writes:

(3.9) A[c
1

c
2

... c
n

] = [e
1

e
2

... e
n

]

1. First case : Naive Gauss
Under the hypothesis of Theorem 1 and since LU = A, then (3.9) is
equivalent to:

LU [c
1

c
2

... c
n

] = [e
1

e
2

... e
n

]

To obtain A�1 it is therefore enough to solve for c
j

, in turn:

LUc
j

= e
j

, for j = 1, ..., n

By letting Uc
j

= y, one has then to solve successively the following 2
triangular systems:
(i) The Lower triangular system Ly = e

j

, and get the vector y by
Forward substitution.
(ii) The Upper triangular system Uc

j

= y, and get thejth column c
j

by Backward substitution.

Example 3.6. Use the LU decomposition of A based on the Naive
Gauss reduction applied to (3.3), to find the first column of A�1
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Referring to Example 3.1, solving:
(i) The Lower triangular system Ly = e

1

, gives y = [1,�3, 14/5, 4/3]0
by Forward substitution
(ii) The Upper triangular system Uc

1

= y, gives c
1

= [158/45,�41/45,�32/45,�2]0
by Backward substitution

2. Second case : Partial Pivoting
Under the hypothesis of Theorem 2 and since LU = PA, then (3.9) is
equivalent to:

PAA�1 = P

or equivalently:
LU [c

1

c
2

... c
n

] = [p
1

p
2

... p
n

]

where p
j

is the jth column of P .
To obtain A�1 it is therefore enough to solve for c

j

, in turn:

LUc
j

= p
j

, for j = 1, ..., n

using the same 2 steps as in the first case above.

Remark 3.1. Note that in Definition 2, the Permutation matrix P
is defined in terms of its rows, while in the process of computing A�1,
one has first to identify the columns of P.

Example 3.7. Use the LU decomposition of A based on the Scaled
Partial Pivoting reduction applied to (3.6), to find the last column of
A�1

Referring to Example 3.3, solving:
(i) The Lower triangular system Ly = p

4

, gives y = [0, 0, 0, 1]0 by For-
ward substitution
(ii) The Upper triangular system Uc

1

= y, gives c
4

= [155/72,�115/24,�83/12,�13/6]0
by Backward substitution

3.5.3 Solving Linear Systems using LU Factorization

Generalizing the method above, if the LU factorization of A is avail-
able, one can as well solve systems Ax = v involving the same coe�-
cient matrix A and varying the right hand side vector v. That is, one
solves 2 triangular systems:
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3.6 Exercises

1. Solve each of the following systems using Naive Gaussian elimination
and Back substitution. Showing the multipliers at each stage. Carry
four significant figures and round to the closest.

(a)

8

<

:

3x
1

+ 4x
2

+ 3x
3

= 10
x
1

+ 5x
2

� x
3

= 7
6x

1

+ 3x
3

+ 7x
3

= 15

(b)

8

<

:

3x
1

+ 2x
2

� 5x
3

= 0
2x

1

� 3x
2

+ x
3

= 0
x
1

+ 4x
2

� x
3

= 4

(c)

8

<

:

3x
1

+ 2x
2

� x
3

= 7
5x

1

+ 3x
2

+ 2x
3

= 4
�x

1

+ x
2

� 3x
3

= �1

2. Apply the Naive Gauss elimination on the following matrices, showing
the multipliers at each stage. Carry four significant figures and round
to the closest.

(a)

2

6

6

4

1 3 2 1
4 2 1 2
2 1 2 3
1 2 4 1

3

7

7

5

(b)

2

6

6

4

1 �1 2 1
3 2 1 4
5 8 6 3
4 2 5 3

3

7

7

5

3. Solve each of the following systems using Gaussian elimination with
Unscaled Partial Pivoting and Back substitution. Write the index
array and the multipliers at each step. Carry four significant figures
and round to the closest.

(a)

8

<

:

3x
1

+ 4x
2

+ 3x
3

= 10
x
1

+ 5x
2

� x
3

= 7
6x

1

+ 3x
3

+ 7x
3

= 15

(b)

8

<

:

3x
1

+ 2x
2

� 5x
3

= 0
2x

1

� 3x
2

+ x
3

= 0
x
1

+ 4x
2

� x
3

= 4
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(c)

8

<

:

3x
1

+ 2x
2

� x
3

= 7
5x

1

+ 3x
2

+ 2x
3

= 4
�x

1

+ x
2

� 3x
3

= �1

4. Apply the Unscaled Partial Pivoting Gauss elimination on the follow-
ing matrices, showing the multipliers and the Index vector at each
stage. Carry four significant figures and round to the closest.

(a)

2

6

6

4

1 3 2 1
4 2 1 2
2 1 2 3
1 2 4 1

3

7

7

5

(b)

2

6

6

4

1 �1 2 1
3 2 1 4
5 8 6 3
4 2 5 3

3

7

7

5

5. Solve each of the following systems using Gaussian Scaled Partial Piv-
oting and Back substitution. Write the index array, thescales vec-
tor and the multipliers at each step.Carry four significant figures and
round to the closest.

(a)

8

>

>

<

>

>

:

2x
1

�x
2

+3x
3

+7x
4

= 15
4x

1

+4x
2

+7x
4

= 11
2x

1

+x
2

+x
3

+3x
4

= 7
6x

1

+5x
2

+4x
3

+17x
4

= 31

(b)

8

<

:

2x
1

+ 4x
2

� 2x
3

= 6
x
1

+ 3x
2

+ 4x
3

= �1
5x

1

+ 2x
2

= 2

(c)

8

>

>

<

>

>

:

�x
1

+ x
2

� 3x
4

= 4
x
1

+ 3x
3

+ x
4

= 0
x
2

� x
3

� x
4

= 3
3x

1

+ x
3

+ 2x
4

= 1

6. Apply the Scaled Partial Pivoting Gauss elimination on the following
matrices, showing the Index vector, thescales vector and the multi-
pliers at each stage. Carry four significant figures and round to the
closest.
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(a)

2

6

6

4

2 3 �4 1
1 �1 0 �2
3 3 4 3
4 1 0 4

3

7

7

5

(b)

2

6

6

4

1 0 3 0
0 1 3 �1
3 �3 0 6
0 2 4 �6

3

7

7

5

(c)

2

4

4 7 3
1 3 2
2 �4 �1

3

5

(d)

2

6

6

6

6

4

8 �1 4 9 2
1 0 3 9 7
�5 0 1 3 5
4 3 2 2 7
3 0 0 0 9

3

7

7

7

7

5

7. Consider the following system of 2 equations in 2 unknowns:

(S)

⇢

10�5x+ y = 7
x+ y = 1

(a) Find the exact solution of (S) in R.
(b) Use the Naive Gauss reduction to solve (S) in F (10, 4,�25,+26)

and compare the result with the exact solution.

(c) Use the Partial Pivoting Gauss reduction to solve (S) in F (10, 4,�25,+26)
and compare the result with the exact solution.

8. Consider the following system of 2 equations in 2 unknowns:

(S)

⇢

2x+ 105y = 105

x+ y = 3

(a) Find the exact solution of (S) in R.
(b) Use the simple Partial Pivoting Gauss reduction to solve (S) in

F (10, 4,�25,+26) and compare the result with the exact solu-
tion.

(c) Use the ScaledPartial Pivoting Gauss reduction to solve (S) in
F (10, 4,�25,+26) and compare the result with the exact solu-
tion.
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9. Based on the Naive Gauss reduction applied to each coe�cient matrix
A of Exercise 2:

(a) Determine the Lower Unit triangular matrix L and the Upper
unit triangular matrix U, then verify that A=LU.

(b) Use the LU decomposition of A to compute the Determinant of
A

(c) Use the LU decomposition of A to determine the inverse of A

10. Based on the Unscaled Partial Pivoting Gauss reduction applied to
each coe�cient matrix A of Exercise 4:

(a) Determine L: the Lower Unit triangular matrix, U: the Upper
unit triangular matrix and P: the Permutation matrix, then verify
that PA=LU.

(b) Use the LU decomposition of A to compute the Determinant of
A

(c) Use the LU decomposition of A to determine the inverse of A

11. Based on the Scaled Partial Pivoting Gauss reduction applied to each
coe�cient matrix A of Exercise 6:

(a) Determine L: the Lower Unit triangular matrix, U: the Upper
unit triangular matrix and P: the Permutation matrix, then verify
that PA=LU.

(b) Use the LU decomposition of A to compute the Determinant of
A

(c) Use the LU decomposition of A to determine the inverse of A

12. Apply the Naive Gauss reduction on the coe�cient matrix of exercise
2(b), then find the last row of the inverse of A.

13. Apply the Unscaled Partial Pivoting Gauss reduction on the coe�cient
matrix of exercise 4(b), then find the 2nd and 4th columns of the
inverse of A.

14. Apply the Scaled Partial Pivoting Gauss reduction on the coe�cient
matrix of exercise 6(c), then find the last column of the inverse of A.

15. Apply the Naive Gauss reduction on the following strictly diagonally
dominant band matrices. Determine at each reduction, the multipliers
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and the elements of the matrix that are modified. Extract the Upper
triangular matrix U and the Lower unit triangular matrix L obtained
at the end of this process.

Definition 3.3. A square matrix A of size n ⇥ n is strictly diago-
nally dominant if for every row, the magnitude of the diagonal entry
is larger then the sum of the magnitude of all the other non diagonal
entries in that row. i.e.

|A(i, i)| >
n

X

j=1

|A(i, j)| ; 8 i = 1, 2, ..., n

As such, the Naive Gauss reduction is successfully applicable on the
matrix.

(a) Let T
n

be a triangular matrix, with

T
n

=

2

6

6

6

6

6

6

6

6

4

a1 b1 0 0 ... 0
c1 a2 b2 0 ... 0
0 c2 a3 b3 ... 0
.... ... ... ... ... ...
.... ... ... ... ... ...
.... ... ... c

n�2

a
n�1

b
n�1

0 ... 0 0 c
n�1

a
n

3

7

7

7

7

7

7

7

7

5

(b) Let Q
n

be an upper quadridiagonal matrix, with

Q
n

=

2

6

6

6

6

6

6

6

6

4

a1 b1 d1 0 ... 0
c1 a2 b2 d2 ... 0
0 c2 a3 b3 ... 0
.... ... ... ... ... ...
.... ... c

n�3

a
n�2

b
n�2

d
n�2

.... ... ... c
n�2

a
n�1

b
n�1

0 ... 0 0 c
n�1

a
n

3

7

7

7

7

7

7

7

7

5

(c) Let q
n

be a lower quadridiagonal matrix, with

q
n

=

2

6

6

6

6

6

6

6

6

4

a1 b1 0 0 ... 0
c1 a2 b2 0 ... 0
d1 c2 a3 b3 ... 0
.... ... ... ... ... ...
.... ... ... ... ... ...
.... ... d

n�3

c
n�2

a
n�1

b
n�1

0 ... 0 d
n�2

c
n�1

a
n

3

7

7

7

7

7

7

7

7

5
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16. Consider the following 5 ⇥ 5 strictly diagonally dominant lower Hes-
senberg matrix

A =

0

B

B

B

B

@

4 1 0 0 0
1 4 1 0 0
1 1 4 1 0
1 1 1 4 1
1 1 1 1 4

1

C

C

C

C

A

1- Apply the Naive Gauss reduction on the matrix A showing the
status of that matrix after each elimination, then extract out of this
process, the Upper triangular matrix U and the Unit Lower triangular
matrix P .
2- Check that at each reduction, the multipliers reduce to one value,
and at each reduction except the last, the modified elements reduce
to two values, in addition to the diagonal element at last reduction.
Compute the total number of flops needed for the LU-decomposition
of the matrix A.
3- Deduce the total number of flops needed for the LU-decomposition
of the (n⇥ n) diagonally dominant lower Hessenberg matrix B where
c is a constant and

B =

0

B

B

B

B

B

B

B

B

@

c 1 0 0 . . . 0
1 c 1 0 . . . 0
1 1 c 1 0 . . 0
. . . . . . . .
. . . . . . . .
1 1 1 . . 1 c 1
1 1 1 1 . . 1 c

1

C

C

C

C

C

C

C

C

A

Express your answer in terms of n.
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3.7 Computer Projects

Exercise 1: Naive Gauss for Special Pentadiagonal Matrices

Definition 3.4. A PentaDiagonal matrix A is a square matrix with 5
non zero diagonals: the main diagonal d, 2 Upper subdiagonals u and v,
and 2 Lower subdiagonals l and m.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

d(1) u(1) v(1) 0 0 . . 0
l(1) d(2) u(2) v(2) 0 . . 0
m(1) l(2) d(3) u(3) v(3) . . 0
0 m(2) l(3) d(4) u(4) . . 0
0 . . . . . . .
. . . . . . . .
. . 0 m(n� 4) l(n� 3) d(n� 2) u(n� 2) v(n� 2)
0 . . 0 m(n� 3) l(n� 2) d(n� 1) u(n� 1)
0 0 . . 0 m(n� 2) l(n� 1) d(n)

3

7

7

7

7

7

7

7

7

7

7

7

7

5

Definition 3.5. A PentaDiagonal matrix A is strictly diagonally dom-
inant if for every row, the magnitude of the diagonal entry is larger then
the sum of the magnitude of all the other non diagonal entries in that row.

|d(i)| > |u(i)|+ |v(i)|+ |l(i� 1)|+ |m(i� 2)| ; 8 i = 1, 2, ..., n

(As such, the matrix A will satisfy the Principal minor property, and the
NAIVE GAUSS reduction is successfully applicable on A.)

Let A be a strictly diagonally dominant pentadiagonal matrix..

1. Write a MATLAB function

function [m1,l1,d1,u1,v1]=NaiveGaussPenta(m,l,d,u,v, tol)

which takes as input 5 column vectors m, l, d, u and v representing
the 5 diagonals of A, and some tolerance tol. At each reduction, if the
absolute value of the pivot element is less then tol an error message
should be displayed, otherwise this function performs Naive Gauss
reduction on the matrix A and returns through the process, the 5
modified diagonals m1, l1, d1, u1 and v1.
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Your function should neither use the built in MATLAB function that
factorizes A into L and U nor use the general code for Naive Gauss re-
duction. Your code should be designed for pentadiagonal matrices
only and should use the least number of flops.

2. Write a MATLAB function x = RowForwardPenta(d, l, m, c)
which takes as input 3 column vectors representing the main diagonal d
and 2 lower diagonals l and m of an invertible Lower triangular matrix
L and a column vector c. This function performs row-oriented Forward
substitution to solve the system Lx=c, using the least number of flops.
Your code should be designed for pentadiagonal matrices only.

3. Write a MATLAB function x = RowBackwardPenta(d, u, v, c)
which takes as input 3 vectors column representing the main diagonal d
and 2 upper diagonals u and v of an invertible Upper triangular matrix
U and a column vector c. This function performs row-oriented Back-
ward substitution to solve the system Ux=c, using the least number
of flops. Your code should be designed for pentadiagonal matrices
only.

4. Write a MATLAB function B = InversePenta(m, l, d, u, v, tol)
which takes as input the 5 diagonals of the pentadiagonal matrix A
and outputs B, the inverse of the matrix A.
Your function should call for the previous functions programmed in
parts 1,2 and 3.

5. Write a MATLAB function T =InverseTransposePenta(m, l, d,
u, v, tol) which takes as input the 5 diagonals of the pentadiagonal
matrix A and outputs T = (At)�1, the inverse of the transpose of A.
Your function should be based on the LU-decomposition of A , and
should call for the functions programmed in parts 1, 2 and 3.

Hint: If A = LU , then:

• At = (LU)t = U tLt

• Since AtT = I, then

At[c
1

, c
2

, ..., c
n

] = U tLt[c
1

, c
2

, ..., c
n

] = [e
1

, e
2

, ..., e
n

]

, U tLt[c
i

] = [e
i

], for i = 1, 2, ..., n
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where c
i

is the ith column of T and e
i

is the ith column of the
Identity matrix I.

6. Test each of your functions on 3 di↵erent strictly diagonally domi-
nant pentadiagonal matrices with n � 5. (In one of the test cases,
choose one of the Pivot elements smaller than tol). Save your inputs
and outputs in a word document.

Exercise 2: Naive Gauss Reduction on Upper Hessenberg matri-
ces. A Hessenberg matrix is a special kind of square matrix, one that is
”almost” triangular. To be exact, an Upper Hessenberg matrix has zero
entries below the first sub-diagonal.

H =

2

6

6

6

6

6

6

4

H(1, 1) H(1, 2) H(1, 3) . . H(1, n)
H(2, 1) H(2, 2) H(2, 3) H(2, 4) . H(2, n)

. . . . . .

. . . . . .
0 . 0 H(n� 1, n� 2) H(n� 1, n� 1) H(n� 1, n)
0 . . 0 H(n, n� 1) H(n, n)

3

7

7

7

7

7

7

5

Definition: An upper Hessenberg matrix H is strictly diagonally domi-
nant if for every row, the magnitude of the diagonal entryis larger than the
sum of the magnitude of all the other non diagonal entries in that row.

|H(i, i) > |H(i, i� 1)|+ |H(i, i+ 1)|+ ...+ |H(i, n)| 8 i = 1, 2, ..., n

(As such, the matrix H will satisfy the Principal minor property, and the
Naive Gauss reduction is successfully applicable on H.)

Le H be a strictly diagonally dominant Upper Hessenberg matrix.

1. Write a MATLAB function [L, U] = NaiveGaussUHessenberg(H)
that takes as input an n⇥ n strictly diagonally dominant upper Hes-
senberg matrix H. This function performs Naive Gauss reduction on
the matrix H and returns at the end of the process, the Upper and
Unit Lower triangular matrices U and L.
Your function should neither use the built in MATLAB function that
factorizes A into L and U, nor use the general code for Naive Gauss re-
duction. Your code should be designed for upper Hessenberg matrices
only, and should use the least number of flops.
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2. Write a MATLAB function [x] = RowForwardUHessenberg(L,
c) that takes as input an invertible bi-diagonal lower triangular square
matrix L of size n (displayed below) and a column vector c of length
n. This function performs row-oriented Forward substitution to solve
the system Lx=c, using the least number of flops. Your code should
be designed for bi-diagonal lower triangular matrices only and should
use the least number of flops.

L =

2

6

6

6

6

6

6

6

6

6

6

4

L(1, 1) 0 . . . . . 0
L(2, 1) L(2, 2) 0 0 . . . 0

0 L(3, 2) L(3, 3) 0 .. . . 0
0 0 L(4, 3) L(4, 4) 0 .) . 0
. . . . . . . .
. . . . . . . .
0 . . . 0 L(n� 1, n� 2) L(n� 1, n� 1) 0
0 0 . . . 0 L(n, n� 1) L(n, n)

3

7

7

7

7

7

7

7

7

7

7

5

3. Write a MATLAB function [B] = InverseUHessenberg(H) that
takes as input an invertible upper Hessenberg matrix H, and outputs
B, the inverse of H, using the LU-decomposition of H. Your function
should call for the previous functions programmed in parts 1 and 2.

4. Test each of your functions above for 2 di↵erent upper Hessenberg
strictly diagonally dominant matrices, with n � 5, and save the re-
sults in a word document.

Call for previous functions when needed.
Do not check validity of the inputs.

Hint: To construct an n ⇥ n upper Hessenberg strictly diagonally
dominant matrix H, proceed as follows. Let:

(a) A = rand(n)

(b) m=max(sum(A))

(c) m1=max(sum(A’))

(d) s=max(m, m1)

(e) B=A + s*eye(n)

(f) H=triu(B, -1)



130 N. Nassif and D. Fayyad

Exercise 3: Naive Gauss on Arrow Matrices
An Arrow matrix is a special kind of square sparse matrix, in which there
is a tridiagonal banded portion, with a column at one side and a row at the
bottom.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

d(1) u(1) 0 . . . . 0 c(1)
l(1) d(2) u(2) 0 . . . 0 c(2)
0 l(2) d(3) u(3) 0. . . 0 c(3)
0 0 l(3) d(4) u(4) 0 . 0 c(4)
. . . . . . . . .
. . . . . . . . .
0 . . 0 l(n� 3) d(n� 2) u(n� 2) c(n� 2)
0 . . 0 0 l(n� 2) d(n� 1) c(n� 1)

r(1) r(2) r(3) r(4) . . r(n� 1) d(n)

3

7

7

7

7

7

7

7

7

7

7

7

7

5

Definition: An Arrow matrix A is strictly diagonally dominant if for
every row, the magnitude of the diagonal entry is larger than the sum of the
magnitude of all the other non diagonal entries in that row. i.e.

|d(n� 1) > |l(i� 1)|+ |u(i+ 1)|+ |c(i)| 8 i = 1, 2, ..., n� 2

|d(n�1)| > |l(n�2)|+ |c(n�1)| and |d(n)| > |r(1)|+ |r(2)|+ ...+ |r(n�1)|

(As such, the matrix A will satisfy the Principal minor property, and the
Naive Gauss reduction is successfully applicable on A, without need for piv-
oting.)

Le A be a strictly diagonally dominant Arrow matrix where:
- d = [d(1), ..., d(n)] is a vector of length (n) representing the main diagonal
of A.
- u = [u(1), ..., u(n � 2)] is a vector of length (n-2), and [u(1), ..., u(n �
2), c(n� 1)] represents the first Upper diagonal of A.
- l = [l(1), ..., l(n�2)] is a vector of length (n-2), and [l(1), ..., l(n�2), r(n�1)]
represents the first Lower diagonal of A.
- c = [c(1), ..., c(n � 1)] is a vector of length (n-1), and c = [c(1), ..., c(n �
1), d(n)] represents the last column of A.
- r = [r(1), ..., r(n � 1)] is a vector of length (n-1), and r = [r(1), ..., r(n �
1), d(n)] represents the last row of A.

1. Write a MATLAB function [d1,u1,l1,c1,r1]=NaiveGaussArrow(d,u,l,c,r)
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that takes as input the 5 vectors defined above representing A. This
function performs Naive Gauss reduction on the matrix A and returns
at the end of the process, the modified vectors : d1, u1, l1, c1, r1 (in-
cluding the multipliers) .
Your function should neither use the built in MATLAB function that
factorizes A into L and U, nor use the general code for Naive Gauss
reduction. Your code should be designed for Arrow matrices only, and
should use the least number of flops.

2. Write a MATLAB function[x]=RowBackwardArrow(d,u,c,b) that
takes as input 3 vectors as defined above, representing an invertible
nearly bi-diagonal upper triangular square matrix U of size n (dis-
played below) and a column vector b of length n. This function per-
forms row-oriented Backrward substitution to solve the system Ux=b,
using the least number of flops. Your code should be designed for
nearly bi-diagonal upper triangular matrices only and should use the
least number of flops.

U =

2

6

6

6

6

6

6

6

6

6

6

4

d(1) u(1) 0 . . . 0 c(1)
0 d(2) u(2) 0 . . 0 c(2)
0 0 d(3) u(3) 0 . 0 c(3)
. . . . . . . .
. . . . . . . .
0 . . 0 d(n� 2) u(n� 2) c(n� 2)
0 . . . . 0 d(n� 1) c(n� 1)
0 . . . . . 0 d(n)

3

7

7

7

7

7

7

7

7

7

7

5

3. Write a MATLAB function [x] = RowForwardArrow(d, l, r, b)
that takes as input 3 vectors as defined above, representing an in-
vertible nearly bi-diagonal lower triangular square matrix L of size
n (displayed below) and a column vector b of length n. This func-
tion performs row-oriented Forward substitution to solve the system
Lx=b, using the least number of flops. Your code should be designed
for nearly bi-diagonal lower triangular matrices only and should use
the least number of flops.
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L =

2

6

6

6

6

6

6

6

6

4

d(1) 0 . . . . . 0
l(1) d(2) 0 0 . . . 0
0 l(2) d(3) 0 . . . 0
. . . . . . . .
. . . . . . . .
0 . . . 0 l(n� 2) d(n� 1) 0

r(1) r(2) . . . . r(n� 1) d(n)

3

7

7

7

7

7

7

7

7

5

4. Write a MATLAB function [B] = InverseArrow((d, u, l, c, r)
that takes as input the 5 vectors defined above representing an in-
vertible Arrow matrix A, and outputs B, the inverse of A, using the
LU-decomposition of A. Your function should call for the previous
functions programmed in parts 1, 2 and 3.

5. Test each of your functions above for 2 di↵erent Arrow strictly diago-
nally dominant matrices A, with n � 6, and save the results in a word
document.

Call for previous functions when needed.
Do not check validity of the inputs.


