
Chapter 1

Computer Number Systems
and Floating Point
Arithmetic

1.1 Introduction

The main objective of this chapter is to introduce the students to modes of
storage of numbers in the computer memory as well as to computer arith-
metic.
In this view, we start by describing computer number representation in the
binary system that uses 2 as the base. Since the usual decimal system uses
base 10, we discuss therefore methods of conversion from one base to an-
other. The octal and hexadecimal systems (respectively, base 8 and base 16
systems) are also introduced as they are often needed as intermediate stages
between the binary and decimal systems. Furthermore, the subsequent hex-
adecimal notation is used to represent internal contents of stored numbers.
Since all machines have limited resources, not all real numbers can be rep-
resented in the computer memory; only a finite subset F of R is e↵ec-
tively dealt with. More precisely, F is a proper subset of the rationals, with
F ⇢ Q ⇢ R. We shall therefore define first in general, normalized floating
point systems F representing numbers in base � 2 N , � � 2 with a fixed
precision p, and analyze particularly the standard IEEE single precision F

s

and double precision F
d

binary systems.
Moreover, the arithmetic performed in a computer is not exact; F is charac-
terized by properties that are di↵erent from those in R. We present therefore
floating point arithmetic operations in the last sections of this chapter.

5

6 N. Nassif and D. Fayyad

Note that IEEE stands for ” Institute for Electrical and Electronics Engi-
neers”. The IEEE Standard for floating point arithmetic (IEEE 754) is the
most widely used standard for floating point operation and is followed by
many hardware and software implementation; most computers languages al-
low or require that some or all arithmetic be carried out using IEEE formats
and operations.
For any base � 2 N , � � 2, we associate the set of symbols S

�

, which con-
sists of � distinct symbols. To illustrate, we have the following examples:

S
10

= {0, 1, .., 9},

S
2

= {0, 1},

S
16

= {0, 1, .., 9, A,B,C,D,E, F}.

The general representation of x 2 R in base � is given by:

(1.1)
x = ±(a

N

�N+...+a
1

�+a
0

+a0
1

��1+...+a0
p

��p) = ±(a
N

a
N�1

...a
1

a
0

·a0
1

...a0
p

)
�

where 0 N <1, 1 p 1 and a
i

, a0
i

2 S
�

, with a
N

6= 0 being the most
significant digit in this number representation.
The number x is thus characterized by its sign ±, its integral part E(x) =
P

N

i=0

a
i

�i and its fractional part F (x) =
P

p

i=1

a0
i

��i, leading to the follow-
ing general expression of x:

x = ±(E(x) + F (x))

or also equivalently: x = ±(E(x).F (x))
Note that in case p =1, the fractional part of x is said to be infinite.

Example 1.1. • The octal representation of 0.36207 is:

(0.36207)
8

= 3⇥ 8�1 + 6⇥ 8�2 + 2⇥ 8�3 + 7⇥ 8�5

• The decimal representation of 57.33333... is :

(57.33333...)
10

= (57.3)
10

= 5⇥ 10 + 7 + 3⇥ 10�1 + 3⇥ 10�2 + ...

• The hexadecimal representation of 4.A02C is :

(4.A02C)
16

= 4 +A⇥ 16�1 + 2⇥ 16�2 + C ⇥ 16�3

Floating Point Arithmetic 7

1.2 Conversion from base 10 to base 2

Assume that a number x 2 R is given in base 10, whereby:

x = ±(d
N

10N+...+d
1

10+d
0

+d0
1

10�1+..+d0
p

10�p) = ±(d
N

d
N�1

...d
1

d
0

.d0
1

...d0
p

)
10

,

where d
i

, d0
i

2 S
10

8i, d
N

6= 0, and p 1. We seek its conversion to base
2, in a way that:

x = ±(b
M

2M + ...+b
1

2+b
0

+b0
1

2�1+ ...+b0
l

2�l) = ±(b
M

b
M�1

...b
1

b
0

.b0
1

...b0
l

)
2

,

where b
i

, b0
i

2 S
2

8i, b
M

6= 0, l 1.
We convert successively the integral and fractional parts of x.

1.2.1 Conversion of the integral part

Starting with the integral part of x, E(x) and writing:

(1.2) E(x) = d
N

10N + ...+ d
1

10 + d
0

= b
M

2M + ...+ b
1

2 + b
0

,

one has to find the sequence {b
i

|i = 0, ...,M} in S
2

, given the sequence
{d

i

|i = 0, ..., N} in S
10

. Both sequences are obviously finite. The conversion
is done using the successive division algorithm of positive integers based on
the Euclidean division theorem stated as follows:

Theorem 1.1. Let D and d be two positive integers. There exist 2 non
negative integers q (the quotient) and r (the remainder), such that r 2
{0, 1, 2, ..., d� 1}, verifying:

D = d⇥ q + r.

For notation purpose, we write q = D div d and r = Dmod d.

Remark 1.1. When D < 0 and d > 0, one has:

D = q ⇥ d+ r, with q = bD
d
c < 0.

where brc : R! Z designates the ”floor function” of the real number r.

On the base of (1.2), if E(x) = D, then one seeks:

D = E(x) = (b
M

2M�1 + ...+ b
1

)⇥ 2 + b
0

8 N. Nassif and D. Fayyad

where
(b

M

2M�1 + ...+ b
1

) = Ddiv 2 and b
0

= Dmod 2.

Thus if D is divided once by 2, the remainder in this division is b
0

. We can
repeat this argument taking then D = b

M

2M�1 + ... + b
1

to find b
1

, then
following a similar pattern, compute successively all remainders b

2

, ..., b
M

.
The process is stopped as soon as the quotient of the division is identical to
zero.
The corresponding MATLAB function can then be easily implemented as fol-
lows:

Algorithm 1.1. Integer Conversion from Base 10 to 2

% Input: D an integer in decimal representation

% Output: string s of binary symbols (0’s and 1’s) representing D in base 2

% All arithmetic is based on rules of the decimal system

function s = ConvertInt10to2(D)

s=[];

while D>0

%Divide D by 2, calculate the quotient q and the remainder r, then add r

%in s from right to left

q=fix(D/2);

r= D - 2*q ;

s=[r s];

D=q;

end

As an application, consider the following example.

Example 1.2. Convert the decimal integer D = 78 to base 2.

Using the above algorithm, we have successively:
78 = 39⇥ 2 + 0
39 = 19⇥ 2 + 1
19 = 9⇥ 2 + 1
9 = 4⇥ 2 + 1
4 = 2⇥ 2 + 0
2 = 1⇥ 2 + 0
1 = 0⇥ 2 + 1.
Hence, one concludes that (78)

10

= (1001110)
2

.

Floating Point Arithmetic 9

We can now introduce base 8 in order to shorten this procedure of con-
version. The octal system is particularly useful when converting from the
decimal system to the binary system, and vice versa. Indeed, if

E(x) = b
M

2M + ...+ b
3

23 + b
2

22 + b
1

2 + b
0

, with b
i

2 {0, 1},

we can group the bits 3 by 3 from right to left (supplying additional ze-
ros if necessary), then factorize successively the positive powers of 8, i.e.
80, 81, 82, ... to have:

E(x) = ...+ (b
5

25 + b
4

24 + b
3

23) + (b
2

22 + b
1

2 + b
0

)

then equivalently:

E(x) = ...+ (b
8

22 + b
7

2 + b
6

)82 + (b
5

22 + b
4

2 + b
3

)81 + (b
2

22 + b
1

2 + b
0

)80

=
l

X

i=0

(b
3i+2

22 + b
3i+1

2 + b
3i

)8i

Letting o
i

= b
3i+2

22 + b
3i+1

2 + b
3i

, one writes then the integral part as
follows:

E(x) =
l

X

i=0

o
i

8i

Note that for all values of i, 0 o
i

 7, implying that o
i

is an octal symbol.
The table of conversion is set up according to the following representations:

Octal symbol Group of 3 binary bits o
i

= b
3i+2

b
3i+1

b
3i

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

table 1. Conversion of octal symbols to base 2

Thus, to convert from base 2 to base 8, groups of 3 binary digits can be
translated directly to octal symbols according to the above table. Conversion
of an octal number to binary can be done in a similar way but in reverse

10 N. Nassif and D. Fayyad

order; i.e. just replace each octal digit with the corresponding 3 binary
digits. To convert an integer from base 10 to base 2, we can therefore start
by converting it to base 8:

(E(x))
10

! (E(x))
8

! (E(x))
2

The algorithm implementing this conversion process is the following:

Algorithm 1.2. Integer Conversion from Base 10 to 8

% Input D=E(x) integer in decimal representation

% Output : string s of octal symbols

% All arithmetic is based on rules of the decimal system

function s=ConvertInt10to8(D)

s=[] ;

While D>0

r=rem(D, 8) ;

D=fix(D/8) ;

s=[r s] ;

end

In the preceding example, using this algorithm we have successively:
78 = 9⇥ 8 + 6
9 = 1⇥ 8 + 1
1 = 0⇥ 8 + 1.
Hence, (78)

10

= (116)
8

through 3 successive divisions by 8.
Referring to the above table of conversion we obviously deduce that:

(78)
10

= (116)
8

= (001 001 110)
2

= (1001110)
2

1.2.2 Conversion of the fractional part

To convert the fractional part F (x) of the decimal x, we introduce the
successive multiplication algorithm. Its principle runs as follows: given
the sequence {d0

i

} 2 S
10

, we seek the sequence {b0
i

} 2 S
2

with:

(1.3) F (x) = d0
1

10�1 + ..+ d0
p

10�p = b0
1

2�1 + ...+ b0
l

2�l

Let f = F (x). Note then the following identity:

2f = b0
1

+ b0
2

2�1...+ b0
l

21�l = b0
1

· b0
2

· ... · b0
l�1

.

Floating Point Arithmetic 11

Obviously through one multiplication of f by 2, the integral and fractional
parts of 2f are respectively:

E(2f) = b0
1

and F (2f) = b0
2

2�1...+ b0
l

21�l

We can therefore repeat the same procedure, of multiplication by 2, to find
successively b0

2

, then b0
3

, ... ,b
0
l

. The corresponding algorithm is the following:

Algorithm 1.3. Fraction Conversion from base 10 to base 2

% Input: F, fractional part of a decimal number 0<F<1

% k, maximum number of binary bits required for binary fractional part

% Output: string s (up to k bits) representing F in base 2

function s=ConvertFrac10to2(F,k)

s=[] ;

i=1;

while F>0 & i<=k

G=2*F;

b=fix(G);

F=G-b;

s = [s b] ;

i=i+1;

end

Note that if f has an infinite representation in base 10, its representation
in base 2 will also be infinite. However, we could have situations where f
is finitely represented in base 10 and infinitely represented in base 2. To
illustrate, consider the following examples.

Example 1.3. Convert (0.25)
10

to base 2.

We apply the above algorithm to get successively:
2⇥ 0.25 = 0 + 0.5
2⇥ 0.5 = 1 + 0.0
Thus (0.25)

10

= (0.01)
2

.

Example 1.4. Convert (0.1)
10

to base 2.

Applying the same non-terminating procedure, we have:
2⇥ 0.1 = 0 + 0.2
2⇥ 0.2 = 0 + 0.4
2⇥ 0.4 = 0 + 0.8

12 N. Nassif and D. Fayyad

2⇥ 0.8 = 1 + 0.6
2⇥ 0.6 = 1 + 0.2
2⇥ 0.2 = 0 + 0.4
2⇥ 0.4 = 0 + 0.8
2⇥ 0.8 = 1 + 0.6
2⇥ 0.6 = 1 + 0.2
...
Thus (0.1)

10

= (0.0001100110011...)
2

= (0.00011)
2

.
We end up with an example where both representations are infinite.

Example 1.5. Convert 1

3

to base 2.

Let us apply the successive multiplication algorithm to this fraction:
2⇥ 1

3

= 0 + 2

3

2⇥ 2

3

= 1 + 1

3

...............
Hence: 1

3

= (0.3)
10

= (0.0101...)
2

= (0.01)
2

Of course, base 8 can also be used as an intermediate stage:

(F (x))
10

! (F (x))
8

! (F (x))
2

By grouping the bits 3 by 3 from left to right, supplying additional zeros
if necessary, then factorizing successively negative powers of 8: 8�1, 8�2, ...
one establishes through these steps the following identities:

F (x) = (b
1

2�1 + b
2

2�2 + b
3

2�3) + (b
4

2�4 + b
5

2�5 + b
6

2�6) + ...

= (b
1

4 + b
2

2 + b
3

)8�1 + (b
4

4 + b
5

2 + b
6

)8�2 + ... = o
1

8�1 + o
2

8�2 + ...

We can then have a new version of the successive multiplication by 8 algo-
rithm converting a fractional decimal to octal, followed by a final conversion
to a binary fractional using the table of conversion.
To illustrate, consider the following examples.

Example 1.6. Convert (0.75)
10

to base 2, using base 8 as intermediate.

A straightforward application of the procedure above yields: 8 ⇥ 0.75 =
6 + 0.00. Hence:

(0.75)
10

= (0.6)
8

= (0.110)
2

= (0.11)
2

Floating Point Arithmetic 13

Example 1.7. Convert x = (0.12)
10

to base 2, using base 8 as intermediate.
Do not exceed 21 bits for the representation of x in base 2.

Getting 21 bits in base 2 means reaching 7 digits in base 8. Therefore one
only needs to apply 7 successive multiplications by 8. This yields:
8⇥ 0.12 = 0 + 0.96
8⇥ 0.96 = 7 + 0.68
8⇥ 0.68 = 5 + 0.44
8⇥ 0.44 = 3 + 0.52
8⇥ 0.52 = 4 + 0.16
8⇥ 0.16 = 1 + 0.28
8⇥ 0.28 = 2 + 0.24
...
Hence (0.12)

10

= (0.0753412...)
8

= (0.000 111 101 011 100 001 010 ...)
2

.

1.3 Conversion from base 2 to base 10

We consider in this section inverse procedures that convert numbers from
base 2 (or 8) to base 10. For a real number x, this is performed as preced-
ingly on the integral part E(x) first, then on the fractional part F (x), Of
course, the successive division and multiplication algorithms can be applied.
However, this would mean dividing or multiplying successively by 10 and
performing the arithmetic operations in base 2 (or 8). Instead, we follow
up a straightforward polynomial evaluation process, with the arithmetic
being performed in base 10. We start by discussing this last issue.

1.3.1 Polynomial evaluation

Consider the polynomial p
n

(y) of degree n, with real coe�cients {a
i

|i =
0, 1..., n} and a

n

6= 0:

p
n

(y) = a
0

+ a
1

y + ...+ a
n�1

yn�1 + a
n

yn ; y 2 R

A first way to evaluate p
n

(y) is by using a straightforward sum of products,
as indicated in the following algorithm:

Algorithm 1.4. Direct Polynomial Evaluation

function p=EvaluatePolyStraight(a,y)

14 N. Nassif and D. Fayyad

% Input a=[a(1),...,a(n+1)] and y

% Output Value of p(y)=a(n+1)*y^n+a(n)*y^{n-1}+...+a(2)*y+a(1)$

n=length(a)-1;

t=y;p=a(1);

for i=2:n+1

p=p+a(i)*t;

t=t*y;

end

This algorithm requires n additions and 2n multiplications.
A more e�cient algorithm called Horner’s algorithm, uses nested eval-
uation. One starts by writing the given polynomial in nested form as shown
below:

p
n

(y) = a
n

yn+a
n�1

yn�1+...+a
1

y+a
0

= (a
n

y+a
n�1

)yn�1+a
n�2

yn�2+...+a
1

y+a
0

= ((a
n

y+a
n�1

)y+a
n�2

)yn�2+...+a
1

y+a
0

= (((a
n

y+a
n�1

)y+a
n�2

)y+a
n�3

)yn�3...+a
1

y+a
0

= (...(((a
n

y + a
n�1

)y + a
n�2

)y + a
n�3

)y + ...+ a
1

)y + a
0

This method can be implemented as follows :

Algorithm 1.5. Nested Polynomial Evaluation

% Input a=[a(1),...,a(n+1)] and y

% Output Value of p(y)=a(n+1)*y^n+a(n)*y^{n-1}+...+a(2)*y+a(1)$

function p=EvaluatePolyNested(a,y)

n=length(a)-1;

p=a(n+1);

for i=n:-1:1

p=p*y+a(i);

end

Such procedure requires n multiplications and n additions, i.e. a total of 2n
operations, that is 2/3 of the number of arithmetic operations in the pre-
vious algorithm. Thus, to minimize the number of arithmetic calculations,
polynomials should always be expressed in nested form before performing
an evaluation.

Example 1.8. Write f(x) = 5x3 � 6x2 + 3x+ 1 in nested form.

f(x) = 5x3 � 6x2 + 3x+ 1 = ((5x� 6)x+ 3)x+ 1

Floating Point Arithmetic 15

1.3.2 Conversion of the integral part

Rewriting identity (1.2) as:

E(x) = b
M

2M + ...+ b
1

2 + b
0

= d
N

10N + ...+ d
1

10 + d
0

,

one seeks now to find the sequence {d
i

} in S
10

given the sequence {b
i

} in
S
2

. Indeed, note that E(x) = p
M

(2), where p
M

is the polynomial of degree
M given by:

p
M

(y) = b
M

yM + ...+ b
1

y + b
0

.

Hence finding E(x) in base 10 reduces to the evaluation, using decimal
arithmetic of the polynomial p

M

(y), for y = 2. In case one wants to use the
octals as intermediates, the bits are first grouped 3 by 3 to write E(x) as a
polynomial in powers of 8, based on the table of conversion. That is:

E(x) = o
L

8L + ...+ o
1

8 + o
0

= q
L

(8),

where q
L

is a polynomial of degree L given by q
L

(y) = o
L

yL+ ...+ o
1

y+ o
0

.
Using decimal arithmetic, one computes then q

L

(y) for y = 8.

Example 1.9. Convert the binary integer D = (01110101110011)
2

to base
10, using base 8 as intermediate.

We first convert D to base 8 using the table of conversion:

D = (01110101110011)
2

= (001 110 101 110 011)
2

= (16563)
8

= 1⇥84+6⇥83+5⇥82+6⇥8+3.

Thus, using nested polynomial evaluation, one gets:

D = (((8 + 6)8 + 5)8 + 6)8 + 3 = (7539)
10

.

1.3.3 Conversion of the fractional part

Given the sequence {b0
i

} 2 S
2

, we seek now the sequence {d0
i

} 2 S
10

, such
that:

F (x) = f = b0
1

2�1 + ...+ b0
l

2�l = d0
1

10�1 + ...+ d0
p

10�p

Using decimal arithmetic, the evaluation of f is based on the following steps:

f = b0
1

2�1 + ...+ b0
l

2�l = 2�l(b0
1

2l�1 + ...+ b0
l

)

16 N. Nassif and D. Fayyad

that is, using nested polynomial evaluation:

f = 2�lp
l�1

(2),

where obviously:
p
l�1

(y) = b0
1

yl�1 + b0
2

yl�2...+ b0
l

.

Clearly then, to use base 8 as an intermediate, through grouping the bits
3 by 3, then referring to the table of conversion, one gets a polynomial
expression in negative powers of 8, specifically:

f = o0
1

8�1 + ...+ o0
k�1

8�k+1 + o0
k

8�k

Equivalently,

f = 8�k(o0
1

8k�1 + ...+ o0
k�1

8 + o0
k

) = 8�kq
k�1

(8),

with q
k�1

(y) = o0
1

yk�1 + ...+ o0
k�1

y + o0
k

.
To illustrate consider the following example.

Example 1.10. Convert the fractional octal f = (0.00111000111)
2

to base
10. Use base 8 as intermediate.

We start by converting f to base 8, yielding:

f = (0.1616)
8

= 1⇥8�1+6⇥8�2+1⇥8�3+6⇥8�4 = 8�4(1⇥83+6⇥82+1⇥8+6)

Through nested evaluation,

83 + 6⇥ 82 + 8 + 6 = ((8 + 6)8 + 1)8 + 6 = 910.

Thus:

f = 8�4 ⇥ 910 =
910

4096
= 0.2221679

1.4 Normalized floating point systems

1.4.1 Introductory concepts

Recall that a standard way to represent a real number in decimal form is
with a sign (+ or -), an integral part, a fractional part and a decimal point
in between, for example: +32.875 or �0.0082.

Floating Point Arithmetic 17

Another standard computer notation called the normalized floating point
representation, is obtained by shifting the decimal point and supplying
appropriate powers of 10. Thus the preceding numbers have an alternate
representation respectively as +3.2875⇥ 101, or �8.2⇥ 10�3.
In general, a non-zero real number x in the base � is written in the standard
normalized floating point form:

x = ± m ⇥ �e

where m is called the mantissa, with 1 m < � and e the exponent,
being a positive or negative integer. These parameters are obtained from
(1.1) by writing:

x = ±(a
N

�N+a
N�1

�N�1+...+a0
p

��p) = ±(a
N

+a
N�1

��1+...+a0
p

��(p+N))⇥�N

where a
N

6= 0, thus leading to

m = a
N

+ a
N�1

��1 + a
N�2

��2 + ...+ a0
p

��(p+N), and e = N

Remark 1.2. If the number x has a non terminating fractional part, in
some cases the mantissa m can reach the value �.

For example, consider the following decimal number x:

x = 0.9999999... = 9⇥ 10�1 + 9⇥ 10�2 + ...

The normalized floating point representation of x is:

x = (9 + 9⇥ 10�1 + 9⇥ 10�2 + ...)⇥ 10�1 = 9.99999999...⇥ 10�1

Thus, the mantissa is infinite with

m = 9.9̄ = 9(1 + 1

10

+ 1

10

2

+ 1

10

3

+ ...) = 9 1

1�1/10

= 10 = �

Example 1.11. Base 10, 2 and 8 representations of 1

3

in normalized floating
point notations.

1. In the normalized floating point notation, 1

3

in base 10 is expressed as
follows:

1

3
= (0.3)

10

= 3.3⇥ 10�1.

Thus, in such system, the mantissa m = 3.3 and the exponent e = �1.

18 N. Nassif and D. Fayyad

2. However in base 2 (Example 1.5), it becomes:

1

3
= (0.01)

2

= (0.0101010101...)
2

= 1.01010101...⇥ 2�2 = 1.01⇥ 2�2,

i.e. the mantissa is m = 1.01 and the exponent e = �2.

3. Finally, to convert 1

3

to base 8:

1

3
= (0.010101010101...)

2

= (0.2525...)
8

= 2.52⇥ 8�1.

where m = 2.52 and e = �1.

Example 1.12. Write the binary number x = (11001.0111)
2

in the normal-
ized floating point notation.

x = (11001.0111)
2

= 1.10010111⇥ 24

Note that every computer system has a finite total capacity and a finite
word length. Numbers used in calculations within a computer system must
conform to the format imposed in that system; only real numbers with a
finite number of digits can be represented, leading then to a strictly limited
degree of precision. Real numbers representable in a computer are called
machine numbers, and are written in a standard format.
A floating point system F consists of machine numbers and is defined
as follows:

Definition 1.1. A normalized floating-point system F = F (�, p, e
min

, e
max

)
is the set of all real numbers written in normalized floating point form
x = ± m ⇥ �e where m is the mantissa of x and e its the exponent , such
that:

1. If x 6= 0, then m = m
0

+ m
1

��1 + ... + m
p�1

��(p�1); with m
i

2
S
�

, m
0

6= 0, and e
min

 e e
max

2. If x = 0, then m = 0, while e could take any value or be selected
according to other criteria.

Floating Point Arithmetic 19

The main parameters of a floating-point system F = F (�, p, e
min

, e
max

),
are:

1. The base �

2. The number of significant digits p, called the precision of the
system which is a finite positive integer that could be given a specific
value (IEEE systems) or be defined by the user (MATHEMATICA or
MAPLE)

3. The range of the exponent [e
min

, e
max

], with e
min

< 0 and e
max

=
|e

min

|+ 1

4. A convention for representing zero

Note that since there is a complete symmetry with respect to zero, between
the positive and negative elements of F , we will analyze and prove in what
follows properties of the positive elements only.

Theorem 1.2. Let x 2 F = F (�, p, e
min

, e
max

), with x = + m ⇥ �e and
x 6= 0.

1. 1 m < �,

2. x
min

 x x
max

, where
x
min

= �e

min

and

x
max

= (� � 1)(1 + ��1 + ...+ ��p+1)�e

max < � ⇥ �e

max .

3. If x = +m⇥ �e 2 F with x
min

 x < x
max

, then the successor of x is
given by

succ(x) = x+ �1�p�e

leading to:
succ(x)� x

x
 ��p+1.

Proof.

1. The first part of the theorem is obtained straightforwardly from the
definition.

20 N. Nassif and D. Fayyad

2. It is enough to note that the minimum value of m is reached when
a
0

= 1 and a
i

= 0, for 1 i p � 1 i.e. m = 1, while the maximum
is obtained when a

i

= � � 1 for all 0 i p � 1. In this case
m = (� � 1)(1 + 1/� + ...+ (1/�)p�1) = �(1� (1/�)p) < �.

3. As for the third part, if x = (m
0

+m
1

��1+ ...+m
p�1

��(p�1))�e, then
the successor of x is obtained by adding 1 unit to the least significant
digit of its mantissa, leading to the following identity:

(1.4) succ(x) = x+ ��p+1�e = (m+ ��p+1)�e

Thus succ(x)� x = ��p+1�e and

(1.5)
succ(x)� x

x
=

��p+1�e

m⇥ �e

=
��p+1

m
 ��p+1

since m � 1.

Definition 1.2. In a floating point system F (�, p, e
min

, e
max

), the system
epsilon or epsilon machine is defined by the parameter ✏

M

:

✏
M

= ��p+1.

Clearly ✏
M

is a measure of the precision of the system, since according to
(1.5) it is a maximum bound on the relative distance between two consec-
utive numbers in F (�, p, e

min

, e
max

). Furthermore, note that equation (1.4)
can be written as:

succ(x) = (m+ ��p+1)�e

from which one concludes that ✏
M

also represents the di↵erence between the
mantissas of two successive positive numbers in F .

As a direct application, we consider the following example:

Example 1.13. Display the elements of the floating point system F =
F (10, 3,�2,+3).

For non zero numbers, we shall display only the positive elements; the neg-
ative ones being deduced by symmetry.

Floating Point Arithmetic 21

Positive numbers in F (10, 3,�2, 3)
1.00⇥ 10�2

1.01⇥ 10�2

....
9.98⇥ 10�2

9.99⇥ 10�2

1.00⇥ 10�1

1.01⇥ 10�1

....
9.98⇥ 101

9.99⇥ 10�1

1.00⇥ 100

1.01⇥ 100

....
9.98⇥ 100

9.99⇥ 100

1.00⇥ 101

1.01⇥ 101

....
9.98⇥ 101

9.99⇥ 101

1.00⇥ 102

1.01⇥ 102

....
9.98⇥ 102

9.99⇥ 102

1.00⇥ 103

1.01⇥ 103

....
9.98⇥ 103

9.99⇥ 103

In this decimal floating point system, the following parameters in F are easily
computed:

• x
min

= 1.00⇥ 10�2

• x
max

= 9.99⇥ 103

• ✏
M

= 10�2 = 0.01.

22 N. Nassif and D. Fayyad

• To represent zero, one might consider ±0. For that purpose, we adopt
a convention whereby ±0 is represented by a 0 mantissa, regardless of
the exponent. Therefore zero 2 F (10, 3,�1, 2), and it is represented
by ± 0.00⇥ 10e for any value of e.

• The total number of elements in F , is

card(F) = 2⇥ [(9⇥ 102)⇥ 6] + 2 = 10802

Moreover, the absolute distances between 2 successive or neighbouring float-
ing point numbers in F, increase and are computed as follows:

Interval Neighboring numbers distance

[10�2, 10�1) ✏
M

⇥ 10�2 = 10�4

[10�1, 1) ✏
M

⇥ 10�1 = 10�3

[1, 101) ✏
M

⇥ 100 = 10�2 = ✏
M

[101, 102) ✏
M

⇥ 101 = 10�1

[102, 103) ✏
M

⇥ 102 = 1
[103, 104) ✏

M

⇥ 103 = 10

These results can be generalized and extended to any floating point system
F = F (�, p, e

min

, e
max

). Absolute distances decrease towards zero, on in-
tervals that are subset of (0,�) and in contrast these distances increase on
intervals in [�, x

max

] towards x
max

, with

max
x2(��,+�)\F

|x� succ(x)| ✏
M

,

We note also that the ✏-machine ✏
M

= �1�p being the smallest upper bound
of relative distances in F coincides with the smallest absolute distance
between successive points only on the interval [1,�). The following table
summarizes such fact.

Floating Point Arithmetic 23

Interval Neighboring numbers distance

........
[1/�3, 1/�2) ��p�2

[1/�2, 1/�) ��p�1

[1/�,�) ��p

[1,�) ��p+1 = ✏
M

[�,�2) ��p+2

[�2,�3) ��p+3

........

Thus, when computing in F, criteria for “numerical convergence” should be
preferably established in terms of relative errors and not absolute ones.

1.4.2 IEEE floating point systems

A computer operating in binary normalized floating point mode represents
numbers as described earlier except for the limitation imposed by the finite
word length. In this section, we shall describe the internal representation
and storage of numbers for IEEE floating point systems. Addressable
words of 4 bytes (32 bits or digits) and 8 bytes (64 bits) are used respectively
in single and double precision floating point systems referred to as F

s

and F
d

.
In what follows, we analyze some properties of these systems successively.

1. IEEE single precision floating point system
By single-precision IEEE floating point numbers, we mean all ac-
ceptable numbers belonging to the normalized floating point system
F
s

=F (2, 24,�126,+127), where a non zero word x of 4 bytes is orga-
nized as follows:

x = ±(1.f)
2

⇥ 2e = (�1)t(1.f)
2

⇥ 2c�127

4 bytes, a total of 32 bits
t sign biased exponent c f part of mantissa m
1 bit 8 bits 23 bits

figure 2. A word of 4 bytes in IEEE single precision.

Remark 1.3.

(i) In F
s

, if x 6= 0, the 1st bit in the mantissa is always 1, so that
this bit does not have to be stored. The stored mantissa consists
of the rightmost 23 bits and contains the fractional part f with an

24 N. Nassif and D. Fayyad

understood binary point. So the mantissa actually corresponds to 24
binary digits since there is a hidden bit. Moreover, the mantissa of
each non zero positive number is restricted by the mantissas of x

min

and x
max

, satisfying the following inequality:

1.000...000 (1.f)
2

 1.111....11

(ii) In order to store positive numbers only, the biased exponent c
is introduced, with e = c� 127. The values of c in F

s

are bounded as
follows:

(0)
10

= (00 000 000)
2

< c < (11 111 111)
2

= (255)
10

The values c = 0 and c = 255 are reserved for special machine numbers
obtained in calculations, that are not elements of F

S

. Thus, the value
c = 0 is reserved for ±0 and the subnormal or denormalized num-
bers (in case of underflow in the computations), while the value c =
255 includes ±1 (in case of overflow in the computations) and “un-
defined” NaN numbers as for example: 0/0,1/1, x

d

/x
d

,1�1,
The sign of Nan has no meaning, but it may be predictable in some
circumstances; most applications (as MATLAB for example) ignore its
sign , and place such elements by ”sort functions” at the high end of
positive numbers. Note also that once generated, a NaN propagates
through all subsequent computations.
The value of the biased exponent c in F

s

, 8x 6= 0, is thus strictly
restricted by the inequality:

(1)
10

= (00 000 001)
2

 c (11 111 110)
2

= (254)
10

or equivalently
�126 e +127.

Recalling that a ”machine number” is any number representable within
a system, we may extend Definition 1.1 as follows:

Definition 1.3. Let x be a machine number in F
s

(2, 24,�126,+127),
where the biased exponent c = e+ 127, then:

(a) 1 c 254 i.e. �126 e 127: x = (�1)t(1.f)⇥ 2c�127.
Moreover, if t = 1 then x < 0 and if t = 0 then x > 0.

(b) c = 0: this value is reserved for special number representations of
0 and de-normalized numbers defined as follows:

Floating Point Arithmetic 25

- The case c = f = 0 is reserved for the zeros, where |x| = 0. By
convention we write x = ±0
- The case c = 0, and f 6= 0, is used to fill the gap between
0 and x

min

(or �x
min

and 0), with de-normalized numbers.
By convention, we write x = x

d

= ±0.f ⇥ 2�126.

(c) c = 255: this value of c is reserved for special number represen-
tations of ±1 and NaN numbers defined as follows:
- The case c = 255 and f = 0 represents by convention x = ±1.
- The case c = 255 and f 6= 0 represents by convention, “Not a
Number” written as x = NaN.

Some machine numbers of the system F
s

are displayed in the following
2 tables.

c Number Representation
in F (2, 24,�126, 127)

c=0 0 0.00...00
c=1 x

min

1.00..00⇥ 2�126

....
c=127 1 1.00..00⇥ 20

...
c=254 x

max

1.11...11⇥ 2127

c f e = c� 127 m Number being represented
0 0 Not Applicable 0.0 ±0
0 6= 0 Not Applicable 0.f (�1)t(0.f)2�126

0 < c < 255 any �127 < e < 128 1.f (�1)t(1.f)2c�127

255 0 Not Applicable 1.0 ±1
255 6= 0 Not Applicable 1.f NaN (Not a Number)

Table 1. Values in IEEE - simple precision system.

We can next give the basic parameters of F
s

.

Parameter Expression(base 2) Decimal value
x
min

2�126 1.175494⇥ 10�38

x
max

(1.1...1)
2

⇥ 2127 = 2128(1� 2�24) 3.402824⇥ 1038

✏
M

2�23 1.192093⇥ 10�7

p 24=23+implicit bit ⇡ 7

26 N. Nassif and D. Fayyad

Note that the machine epsilon ✏
M

= (2�23)
2

= (21�24)
2

< (2 ⇥
10�7)

10

< (101�7)
10

. This implies that in a simple computation in
base 10, approximately 7 significant decimal digits of accuracy may be
obtained in single precision.
When more precision is needed, double precision can be used, in
which case each double precision floating number is stored in 2 com-
puter words in memory.

2. IEEE double precision floating point system
Definition 1.1 is also extended to define the IEEE double precision sys-
tem F

d

= F (2, 53,�1022, 1023), where a non zero number in standard
floating point representation corresponds to:

x = ±(1.f)
2

⇥ 2e = (�1)t(1.f)
2

⇥ 2c�1023

where e = c�1023, with the biased exponent c verifying: 1 c 2046.
The system F

d

uses a word of 8 bytes organized as follows.

8 bytes, a total of 64 bits
t sign biased exponent c f part of mantissa m
1 bit 11 bits 52 bits

figure 3. A word of 8 bytes for IEEE double precision.

On the basis of the concepts explained above for F
s

, the number system
F
d

is displayed in the following table:

c f e = c� 1023 m Number being represented
0 0 Not Applicable 0.0 ±0
0 6= 0 Not Applicable 0.f (�1)t(0.f)2�1022

0 < c < 2047 any �1023 < e < 1024 1.f (�1)t(1.f)2c�1023

2047 0 Not Applicable 1.0 ±1
2047 6= 0 Not Applicable 1.f NaN (Not a Number)

Table 2. Values in IEEE - double precision system.

The basic parameters for F
d

are displayed then, as follows:
Parameter Expression(base 2) Decimal value

x
min

2�1022 2.2250738507201⇥ 10�308

x
max

(1.1...1)
2

⇥ 21023 = 21024(1� 2�53) 1.79769313486231⇥ 10308

✏
M

2�52 2.220446049250313⇥ 10�16

p 53=52+implicit bit ⇡ 16

Floating Point Arithmetic 27

The machine epsilon ✏
M

⇡ 2�52 ⇡ 2.2⇥ 10�16 < 101�16. This implies
that in a double computation approximately 16 significant decimal
digits of precision are available.

Remark 1.4. In the process of representing machine numbers in F
s

or F
d

, it could be convenient to use the hexadecimal symbols (base
16) to get a more “compact” form of the storage. The symbols A, B, C,
D, E, F represent 10, 11, 12, 13, 14, and 15 respectively, as displayed
in the following table of equivalences:

Hexadecimal 0 1 2 3 4 5 6 7 8 9
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Hexadecimal A B C D E F
Binary 1010 1011 1100 1101 1110 1111

Representing then machine binary numbers with hexadecimal symbols
is particularly easy. We need only regroup the binary digits from groups
of 3 (as required in the octal system), to groups of 4. Note that the
reverse procedure is also used.

Example 1.14. Determine the hexadecimal representation of the dec-
imal number d = �52.234375 in both single precision and double pre-
cision.
We start by converting the given number to binary, then normalize it:

• E(x)=(52)
10

= (64)
8

= (110 100)
2

• F(x)=(0.234375)
10

= (0.17)
8

= (0.001 111)
2

• Therefore:
(52.234375)

10

= (110 100.001 111)
2

= (1.101 000 011 110)
2

⇥ 25

In F
s

(2, 24,�126,+127):
- The normalized mantissa of d is m=1.101 000 011 110
- The exponent of d is e = (5)

10

= c � 127 implying that the biased
exponent is c = (132)

10

= (204)
8

= (10 000 100)
2

The single precision machine representation of d is then:

[1100 0010 0101 0000 1111 0000 0000 0000]
2

= [C250F000]
16

28 N. Nassif and D. Fayyad

In F
d

(2, 53,�1022,+1023):
- The normalized mantissa of d is m= 1.101 000 011 110
- The exponent of d is e = (5)

10

= c � 1023, and the biased exponent
is therefore c = (1028)

10

= (2004)
8

= (10 000 000 100)
2

The double precision machine representation of d is:

[1100 0000 0100 1010 0001 1110 0000 ... 00 00]
2

= [C04A1E0000000000]
16

Example 1.15. Determine the binary number x in F
s

that corre-
sponds to [45DE4000]

16

, then find its decimal representation.
The 32 bits string representation of x is:

[01000101110111100100000000000000]
2

The biased exponent is c = (10 001 011)
2

= (213)
8

= (139)
10

, so
e = 139� 127 = 12 Therefore:

(x)
2

= +(1.101 111 001)
2

⇥ 212

1.4.3 De-normalized Numbers in MATLAB

Default formats for numbers in MATLAB is IEEE double precision. One can
easily check out the de-normalized numbers in the system, as indicated
through the following set of commands.

realmin %2^(-1022)

ans =

2.2251e-308

>> 0.5*2^(-1022)

ans =

1.1125e-308

>> 0.25*2^(-1022)

ans =

5.5627e-309

>> 0.125*2^(-1022)

ans =

2.7813e-309

Floating Point Arithmetic 29

1.4.4 Rounding errors in floating point representation of num-
bers

Consider a general floating point system F = F (�, p, e
min

, e
max

), with � � 2.
For all x 2 R with x

min

< |x| < x
max

, and x 62 F, we seek for a procedure
leading to the representation of x in F . The process of replacing x by its
nearest representative element in F is called correctly rounding, and the
error involved in this approximation is called roundo↵ error. We want to
estimate how large it can be.
For such x, there exist x

1

and x
2

= succ(x
1

), with x
1

, x
2

2 F , such that x
1

<
x < x

2

.

Definition 1.4. The floating point representation of x in F is an application
fl: R ! F , such that fl(x) = x

1

or fl(x) = x
2

following one of the rounding
procedures defined below.

1. Rounding by Chopping:
fl

0

(x) = x
1

, if x > 0, (and fl
0

(x) = x
2

, if x < 0)
(i.e. fl

0

(x) is obtained by simply dropping the excess of digits in x)

2. Rounding to the closest:

(a) fl
p

(x) = x
1

if |x� x
1

| < |x� x
2

|
(b) fl

p

(x) = x
2

if |x� x
2

| |x� x
1

|

Remark 1.5. Let x = (1.b
1

..b
23

b
24

b
25

...)
2

.Rounding x in F
s

to the closest
stands as follows:

• If b
24

= 0, then fl
p

(x) = x
1

.

• If b
24

= 1 then fl
p

(x) = x
2

.

Proof. To obtain this result, based on the definition above, simply note
that if

x
1

= (1 · b
1

b
2

...b
23

)2e, andx
2

= succ(x
1

) = x
1

+ (2�23)2e

then the midpoint of the line segment [x
1

, x
2

] is

x
M

=
x
1

+ x
2

2
= x

1

+ (2�24)2e = 1 · b
1

...b
23

1 ; (x
M

/2 F)

Consequently, since in the general case x
M

= (x + �

�p+1

2

⇥ �e) is the mid-
point of the line segment [x, succ(x)], one easily verifies the following result

30 N. Nassif and D. Fayyad

graphically:

Theorem 1.3. Let x 2 R and x 62 F = F (�, p, e
min

, e
max

), with x
min

<
|x| < x

max

. Then:

fl
p

(x) = fl
0

(x+
��p+1

2
⇥ �e)

Example 1.16. Let x = (13.14)
10

. Find the internal representation of x
using IEEE single precision notation, (rounding to the closest if needed).
Find then the hexadecimal representation of x.

As a first step we convert x to a binary number:

x = (1101.001000111101011100001010001111...)
2

We next normalize the number obtained:

x = (1.101001000111101011100001010001111...)
2

⇥ 23

Hence, the 2 successive numbers x
1

and x
2

of F
s

are:

x
1

= (1.10100100011110101110000)
2

⇥ 23

x
2

= (1.10100100011110101110001)
2

⇥ 23

Obviously, rounding x to the closest gives fl
p

(x) = x
2

.
Note also that e = 3 and c = (130)

10

= (10000010)
2

.
Hence, the machine number in F

s

is as follows:

4 bytes = 32 bits
t c f
0 10000010 10100100011110101110001

or also equivalently:

01000001010100100011110101110001

with hexadecimal representation:

[4 1 5 2 3 D 7 1]
16

Remark 1.6.

Floating Point Arithmetic 31

Note that to round x < 0, we could apply the above procedures to |x| first,
then multiply the result obtained by -1.
We turn now to the error that can occur when we attempt to represent
a given real number x in F. As for relative error estimates we have the
following.

Proposition 1.1. Let x 2 R with x /2 F = F (�, p, e
min

, e
max

) and x
min

<
|x| < x

max

. Then, the representations of x in F verify the following relative
error estimates:

1. |x�fl

0

(x)|
|x| < ✏

M

,

2. |x�fl

p

(x)|
|x| 1

2

✏
M

,

where ✏
M

= ��p+1 is the epsilon machine of the system.

Proof. Without loss of generality, we shall prove the above properties
for positive numbers. Let x

1

and x
2

be in F(�, p, e
min

, e
max

), such that

x
1

< x < x
2

= succ(x
1

).

Then,

|x� fl
0

(x)| < (x
2

� x
1

) and |x� fl
p

(x)| (x
2

� x
1

)

2
.

Furthermore, given that x
1

< x, the estimates of the proposition are obvi-
ously verified since in both cases x

2

�x

1

x

1

 ✏
M

.

Remark 1.7. Note that Proposition 1.1 can be summarized by the following
estimate:

|x�fl(x)|
|x| u where u =

⇢

✏
M

, if fl = fl
0

✏
M

/2, if fl = fl
P

This inequality can also be expressed in the more useful form:

(1.6) fl(x) = x(1 + �) where |�| u

To see that, simply let � = fl(x)�x

x

. Obviously |�| u, with fl(x) yielding
the required result.

32 N. Nassif and D. Fayyad

Remark 1.8. When computing a mathematical entity E 2 R (for example,
E=⇡,

p
2, ln 2,..) up to r decimal figures, one seeks an approximation

Ê to E such that Ê 2 F(10, r, e
min

, e
max

), a user floating-point system with
a base of 10 and r significant digits. A rounding procedure to the closest
would yield Ê satisfying the following error estimate:

|E � Ê|
|E| 1

2
101�r.

To illustrate, we give some examples.

Example 1.17. 1. Consider E = ⇡ = 3.14159265358979... 2 R. In
seeking for the representative Ê of ⇡ 2 F = F (10, 6, e

min

, e
max

), we
first look for 2 successive numbers x

1

and x
2

in F such that

x
1

 E x
2

.

Obviously x
1

= 3.14159 and x
2

= 3.14160. Rounding to the closest
would select Ê = 3.14159, with

|E � Ê|
|E| 1

2

|x
2

� x
1

|
x
1

= 1.59155077526⇥10�6 1

2
101�6 = 5⇥10�6 =

✏
M

2

2. Similarly, Ê = 1.4142136 approximates E =
p
2 up to 8 significant

figures. Since

x
1

= 1.4142135 <
p
2 = 1.414213562373095... < x

2

= 1.4142136

and

|x
2

� x
1

|
2x

1

=
7.071067628

2
⇥ 10�8 = 0.35⇥ 10�7 < 0.5⇥ 101�8 =

✏
M

2
.

1.5 Floating Point Operations

For a given arithmetic operation · = {+,�,⇥,÷} in R, we define respectively
in F the floating point operations: � = {�, ,⌦,↵}, i.e.

� : F⇥ F! F

Each of these operations is called a flop and according to IEEE standards,
is designed as follows.

Floating Point Arithmetic 33

Definition 1.5. In the standards of floating point operations in IEEE con-
vention:

8x and y 2 F, x� y = fl(x · y).

This definition together with (1.6) leads to the following estimate:

x� y = (x · y)(1 + �), with |�| u,

where u = ✏
M

or u = ✏

M

2

, depending on the chosen rounding procedure.
Practically, Definition 1.5 means that x � y is computed according to the
following steps:

• 1st: correctly in R as x · y

• 2nd: normalizing in F

• 3rd: rounding in F

Under this procedure, the relative error will not exceed u.

Remark 1.9. : Let x, y 2 F = F (�, p, e
min

, e
max

).

x� y = fl(x+ y) = (x+ y)(1 + �) = x(1 + �) + y(1 + �)

meaning that x � y is not precisely (x + y), but is the sum of x(1 + �) and
y(1 + �), or also that it is the exact sum of a slightly perturbed x and a
slightly perturbed y.

Example 1.18. If x, y, and z are numbers in F
s

, what upper bound can be
given for the relative roundo↵ error in computing z⌦(x�y), with (fl = fl

p

).
In the computer, the innermost calculation of (x+ y) will be done first:

fl(x+ y) = (x+ y)(1 + �
1

) , |�
1

| 2�24

Therefore:

fl[z fl(x+ y)] = z fl(x+ y)(1 + �
2

) , |�
2

| 2�24

Putting both equations together, we have:

fl[z fl(x+y)] = z(x+y)(1+�
1

)(1+�
2

) = z(x+y)(1+�
1

+�
2

+�
1

�
2

) = z(x+y)(1+�
1

+�
2

) = z(x+y)(1+�),

where � = �
1

+ �
2

.

34 N. Nassif and D. Fayyad

In this calculation, we neglect |�
1

�
2

| 2�48. Moreover, |�| = |�
1

+ �
2

|
|�
1

|+ |�
2

| 2�24 + 2�24 = 2�23

Although rounding errors are usually small, their accumulation in long and
complex computations may give rise to unexpected wrong results, as shown
in the following example:

Example 1.19. [24], p.7 Consider the following sequence of numbers:

z
2

= 2, z
n+1

= 2n�1/2

q

1�
p

1� 41�nz2
n

, n = 2, 3, ...

It can be proved that this sequence theoretically converges to ⇡ = 3.141592653589793.
But when MATLAB is used to compute z

n

, the relative error between ⇡ and z
n

decreases till nearly the 16th iteration, then grows vastly because of roundo↵
errors”. These results are partly summarized in the table below.

i 2 6 16
z
i

2.000000000000000 3.136548490545931 3.141592654807589
| zi�⇡

⇡

| O(10�1) O(10�3) O(10�10)

i 28 30
z
i

....... 3.162277660168379 4.000000000000000
| zi�⇡

⇡

| O(10�3) O(10�1)

We look now for specific problems caused by rounding errors propagation.

1.5.1 Algebraic properties in floating point operations

Since F is a proper subset of R, elementary algebraic operations on floating
point numbers do not satisfy all the properties of analogous operations in
R.
To illustrate, let x, y, z 2 F. The floating point arithmetic operations verify
the following properties. :

1. Floating point addition is commutative in F

x� y = fl(x+ y) = fl(y + x) = y � x,

Floating Point Arithmetic 35

2. Floating point multiplication is commutative in F

x⌦ y = y ⌦ x

3. Floating point addition is not associative in F

(x� y)� z 6⌘ x� (y � z)

4. Floating point multiplication is not associative in F

(x⌦ y)⌦ z 6⌘ x⌦ (y ⌦ z)

5. Floating point multiplication is not distributive with respect floating
point addition in F

x⌦ (y � z) 6= (x⌦ y)� (x⌦ z),

Example 1.20. Let x = 3.417 ⇥ 100, y = 8.513 ⇥ 100, z = 4.181 ⇥ 100 2
F(10, 4,�2, 2). Verify that addition is not associative in F.

x� y = 1.193⇥ 101 and (x� y)� z = 1.611⇥ 101,
while: y � z = 1.269⇥ 101 and x� (y � z) = 1.610⇥ 101.
Particularly, associativity is violated whenever a situation of overflow occurs
as in the following example.

Example 1.21. Let a = 1 ⇤ 10308 , b = 1.01 ⇤ 10308 and c = �1.001 ⇤ 10308
be 3 floating point numbers in F

D

expressed in their decimal form.

a� (b� c) = 1 ⇤ 10308 � 0.009 ⇤ 10308 = 1.009 ⇤ 10308

while
(a� b)� c =1

since (a� b) = 2.01 ⇤ 10308 ⌘ 1 > x
max

⇡ 1.798 ⇤ 10308 in F
D

1.5.2 The problem of absorption

Let x, y be two non-zero positive numbers 2 F
s

, with

x = m
x

⇥ 2ex , y = m
y

⇥ 2ey ,

36 N. Nassif and D. Fayyad

Assume y < x, so that:

x+ y = (m
x

+m
y

⇥ 2ey�e

x)⇥ 2ex .

Clearly, since m
y

< 2, if also e
y

� e
x

 �25, then

x+ y < (m
x

+ 2�24)⇥ 2ex = (x+ succ(x))/2.

Hence using fl = fl
p

, one gets:

x� y = fl
p

(x+ y) = x,

although y 6= 0. In such situation, we say that y is absorbed by x.

Definition 1.6. (Absorption Phenomena) Let x, y 2 F(�, p, e
min

, e
max

), y
is said to be absorbed by x, if x� y = x.

Example 1.22. Consider the sum of n decreasing positive numbers {x
i

|i =
1, ..n}, with x

1

> x
2

> ... > x
i

> x
i+1

> ... > x
n

, and let S
n

=
P

n

i=1

x
i

.
There are two obvious ways to program this finite series; by increasing or
decreasing index. The corresponding algorithms are as follows:

Algorithm 1.6. Harmonic series evaluation by increasing indices

% Input : x=[x(1),...,x(n)]

% Output : sum of all components of x by Increasing index

function S=sum1(x)

S=0 ;

n=length(x) ;

for i=1:n

S=S+x(i)

end

which leads then for example for n = 4 to the floating point number

S
1

= (((x
1

� x
2

)� x
3

)� x
4

).

Algorithm 1.7. Harmonic series evaluation by decreasing indices

function S=sum2(x)

Floating Point Arithmetic 37

% Input x=[x(1),...,x(n)]

% Output : sum of all components of x by Decreasing index

S=0 ;

n=length(x) ;

for i=n:-1:1

S=S+x(i)

end

which gives for n = 4, the floating point number

S
2

= (((x
4

� x
3

)� x
2

)� x
1

)

Obviously, S
1

6= S
2

and S
2

is more accurate than S
1

that favors the absorp-
tion phenomena .

Example 1.23. Consider the following sequence of numbers in F (10, 4,�3, 3),
x
1

= 9.999⇥100, x
2

= 9.999⇥10�1, x
3

= 9.999⇥10�2 and x
4

= 9.999⇥10�3.

The exact value of
P

4

i=1

x
i

is 11.108899 = 1.1108899⇥ 101. Using rounding
by chopping for example, the first algorithm would give 1.108 ⇥ 101 while
the second provides 1.110⇥ 101!

1.5.3 The problem of Cancellation or Loss of precision

The problem of cancellation occurs when subtracting two positive floating-
point numbers of almost equal amplitude. To start, consider the following
example.

Example 1.24. Let x
1

, x
2

2 F (10, 5,�3, 3). To subtract x
2

= 8.5478⇥ 103

from x
1

= 8.5489⇥ 103, the operation is done in two steps:

x
1

8.5489⇥ 103

x
2

8.5478⇥ 103

x
1

� x
2

= 0.0011⇥ 103

Normalized result 1.1000⇥ 100

Hence the result appears to belong to a new floating-point system F(10, 2,�3, 3)
that is less precise (p = 2) than the original one (p = 5). We are experiencing
the phenomenon of Cancellation that causes loss of significant figures
in floating-point computation. This can be summarized by the following
proposition.

38 N. Nassif and D. Fayyad

Proposition 1.2. Let x, y 2 F = F (�, p, e
min

, e
max

). Assume x and y are
two numbers of the same sign and the same order, (|x|, |y| = O(�e)). Then
there exists k > 0, such that x � y is represented in a less precise floating
point system F (�, p� k, e

min

, e
max

).

Proof. Assume the two numbers x and y are expressed as follows.

x = (a
0

+ a
1

��1 + ...+ a
k

��k + ...+ a
p�1

��p+1)⇥ �e

and
y = (a0

0

+ a0
1

��1 + ...+ a0
k

��k + ...+ a0
p�1

��p+1)⇥ �e

with a
i

= a0
i

for i k � 1 < p� 1. It is obvious that:
x � y = ((a

k

� a0
k

)��k + ... + (a
p�1

� a0
p�1

)��p+1) ⇥ �e = (c
k

��k + ... +

c
p�1

��p+1)⇥ �e

Hence: x� y = (c
k

+ ...+ c
p�1

��(p�k�1))⇥ �e�k, with c
k

6= 0
Consequently, x� y is represented in a system which precision is p� k.

Example 1.25. Alternate series and the phenomenon of cancella-
tion.

Consider the example of computing exp(�a), a > 0. For that purpose, we
choose one of the following alternatives:

1. A straightforward application of the Taylor’s series representation of
exp(x), giving for x = �a, an alternating series:

(1.7) exp(�a) = 1� a+
a2

2!
� a3

3!
+

a4

4!
+ ...+ (�1)na

n

n!
+ ...,

2. On the other hand, computing first exp(a) for a > 0, using the same
series representation, which however has all its terms positive,

(1.8) exp(a) = 1 + a+
a2

2!
+

a3

3!
+

a4

4!
+ ...+

an

n!
+ ...,

followed up by an inverse operation:

(1.9) exp(�a) = 1/ exp(a).

would yield more accurate results.

Computing with the first power series for large negative values of a, leads
to drastic cancellation phenomena, while the second alternative provides
accurate results as the following example indicates.

Floating Point Arithmetic 39

Example 1.26. Consider the computation of exp(�20) which exact value
is 2.061153622438558⇥ 10�9.

If the implementation is done in MATLAB which uses double precision IEEE
formats, using successively the following algorithms:

Algorithm 1.8. Implementing ex: alternative 1

function y=myexp(x)

tol=0.5*10^(-16);

y=1;

k=1;

T=x;

while abs(T)/y>tol;

y=y+T;k=k+1;T=T*x/k;

end

A second alternative would be to compute e|x|, then use for x < 0: ex =
1/e|x|.

Algorithm 1.9. Implementing ex: alternative 2

function y=myexp(x)

tol=0.5*10^(-16);

y=1;

k=1;

v=abs(x);

T=v;

while abs(T)/y>tol;

y=y+T;k=k+1;T=T*v/k;

end

if x<0

y=1/y;

end

The results came as follows.

First alternative (1.7) Value
�19

Second alternative (1.9) Value
2.061153622438558⇥ 10�9

Another example deals with the computation of the roots of a quadratic
equation.

40 N. Nassif and D. Fayyad

Example 1.27. Consider the computation of the roots of x2 +2bx+ c = 0,
where c is a positive number ”much smaller” than b2.

There are 2 ways for handling the numerical computation of the solutions
to this obvious problem.

1. A straightforward application of the well-known formulae:

(1.10) x
1

= �b�
p

b2 � c ⇡ �2b; x
2

= �b+
p

b2 � c ⇡ 0.

There is obviously in this way, loss of significant figures when comput-
ing x

2

2. However, computing first x
1

then using

(1.11) x
2

=
c

x
1

would not result in loss of digits.

1.6 Computing in a floating point system

Clearly in normalized floating point systems F = F (�, p, e
min

, e
max

), no irra-
tional nor rational numbers that do not fit the finite format imposed by the
computer can be represented, neither too large nor too small real numbers
are. Thus the e↵ective number system for a computer is not a continuum,
but rather a non uniformly distributed finite subset of the rational num-
bers, i.e a “strange” set of rational numbers with irregular gaps. The total
number of elements in F is easily computed and is given by:

(1.12) card(F) = 2(� � 1)(�)p�1(e
max

� e
min

+ 1) + 2

Note that this count excludes the de-normalized numbers, but includes ±0.
In what follows, we analyze particularly some cardinality and distribution
properties of floating point systems F, where the exponents are such that
e
max

= |e
min

| + 1, as for example the cases of the IEEE single and double
precision systems F

s

and F
d

.

Floating Point Arithmetic 41

1.6.1 Cardinality and distribution of special Floating- point
System

Let F = F(2, p, E
min

, E
max

), with E
max

= |E
min

| + 1, and E
min

< 0. Note
that

card(F) = 2 ⇤ card(F
+

) + 2,

where F
+

is the set of all non zero positive elements of F. Based on (1.12),
it can be easily shown that:

card(F
+

) = 2p�1(E
max

+ |E
min

|+ 1).

Hence:
N

F

= card(F) = 2p(E
max

+ |E
min

|+ 1) + 2

Since also E
max

= |E
min

|+ 1, then:

N
F

= 2p(2E
max

) + 2 = 2p+1(E
max

) + 2.

On the other hand, if we consider now F
0

, the subset of non zero elements
of F defined as follows:

F
0

= {x 2 F|x = ±1.f ⇥ 2e, E
min

 e 0}

one finds that:
N

F

0

= card(F
0

) = 2p(E
max

)

since in that case the number of di↵erent values taken by the exponent in F
is

|E
min

|+ 1 = E
max

Note now that N
F

0

represents half of the total of the non zero elements of
F, since:

(1.13)
N

F

0

N
F

� 2
=

2p(E
max

)

2p+1(E
max

)
=

1

2
.

This leads to the following proposition:

Proposition 1.3. In a Floating point system F(2, p, E
min

, E
max

), with E
max

=
|E

min

|+ 1, half of the non zero floating-point numbers are located in the in-
terval (�2, 2) with the other half located in [�x

max

,�2] [[2, x
max

].
Proof. This follows from formula (1.13).

It is also worth noting that all floating point numbers ±1.f ⇥ 2e become

42 N. Nassif and D. Fayyad

integers for e � p � 1. These facts are visualized in the simulation that
follows in next section.

1.6.2 A MATLAB simulation of a floating-point system

The following function generates the non-negative numbers of a floating-
point system F(b, p, emin, emax).

Algorithm 1.10. Simulation of a floating-point system

function x=float_v(b,p,emin,emax)

x=[];

epsm=b^(-p+1);

M=1:epsm:b-epsm;

E=1;

for e=0:emax

x=[x M*E];

E=b*E;

end

E=1/b;

for e=-1:-1:emin

x=[M*E x];

E=E/b;

end

x=[0 x];

As a result, we plot the distribution of non-negative numbers of F(2, 4,�6, 7),

and those of F (2, 3,�3, 4)

Floating Point Arithmetic 43

1.6.3 Tips for floating point computation

To conclude, we may set an ensemble of rules that could avoid situations
where accuracy can be jeopardized by the propagation of rounding errors
through all type of floating-point operations and more particularly through
absorption and cancellation. Finite precision arithmetic requests when pro-
gramming some safeguarding habits. For example:

1. Scale the problem if possible to have its parameters on intervals with
high “density” of floating-point numbers.

2. Seek always algorithms that would solve numerically a problem with
the least number of flops.

3. Use Taylor’s series expansions.

4. Avoid using alternating series.

5. Sum up positive elements of a series by adding from the smallest to
the largest.

6. Rationalize expressions.

7. Use trigonometric identities
........

44 N. Nassif and D. Fayyad

1.7 Exercises

1. Find the binary representation of the following numbers. Check the
results by reconverting them to decimals.

(a) e ⇡ (2.718)
10

(b) 7

8

(c) (792)
10

2. Convert the following decimal numbers to octal numbers.

(a) 37.1

(b) 12.34

(c) 3.14

(d) 23.38

(e) 75.231

(f) 57.231

3. Convert the following binaries to octal and then to decimal numbers.

(a) (110 111 001.101 011 101)
2

(b) (1 001 100 101.011 01)
2

4. Convert the following numbers as required.

(a) (100 101 101)
2

= ()
8

= ()
10

(b) (0.782)
10

= ()
8

= ()
2

(c) (47)
10

= ()
8

= ()
2

(d) (0.47)
10

= ()
8

= ()
2

(e) (51)
10

= ()
8

= ()
2

(f) (0.694)
10

= ()
8

= ()
2

(g) (110 011.111 010 110 110 1)
2

= ()
8

= ()
10

(h) (351.4)
8

= ()
2

= ()
10

(i) (45753.127664)
8

= ()
2

= ()
10

5. Convert x = (0.6)
10

first to octal and then to binary. Check your
result by converting directly to binary.

Floating Point Arithmetic 45

6. Prove that the decimal number 1

5

cannot be represented by a finite
expansion in the binary system.

7. Prove that a real number has a finite representation in the binary
number system if and only if it is of the form ±m/2n, where n and m
are positive integers.

8. Prove that any number that has a finite representation in the binary
system must have a finite representation in the decimal system.

9. Display the positive elements of the floating point system F = F (2, 3,�2,+3).
Determine the cardinality of F.

10. Determine the IEEE single precision representation of the decimal num-
ber 64.015625.

11. Determine the IEEE single and double precision representations of the
following decimal numbers:

(a) 0.5, -0.5

(b) 0.125, -0.125

(c) 0.0625, -0.0625

(d) 0.03125, -0.03125

(e) 1.0, -1.0

(f) +0.0, -0.0

(g) -9876.54321

(h) 0.236375

(i) 294.78125

(j) 54.37109375

(k) -285.75

(l) 10�2

12. Which of these are machine numbers on the IEEE single precision sys-

tem?

(a) 10403

(b) 1 + 2�32

(c) 1/5

(d) 1/10

46 N. Nassif and D. Fayyad

(e) 1/256

(f) 24 + 227

13. Identify the floating-point numbers corresponding to the following bit
strings in the IEEE single precision system:

(a) 0 00000000 00000000000000000000000

(b) 1 00000000 00000000000000000000000

(c) 0 11111111 11111111111111111111111

(d) 1 11111111 11111111111111111111111

(e) 0 00000001 00000000000000000000000

(f) 0 10000001 01100000000000000000000

(g) 0 01111111 00000000000000000000000

(h) 0 01111011 10011001100110011001101

14. In the IEEE single precision system, what are the bit-string representa-
tion for the following sub-normal numbers?

(a) 2�127 + 2�129

(b) 2�127 + 2�145

(c) 2�127 + 2�130

(d)
P

149

k=127

2�k

15. Determine the decimal numbers that have the following IEEE single

precision system representations:

(a) [3F27E520]
16

(b) [CA3F2900]
16

(c) [C705A700]
16

(d) [494F96A0]
16

(e) [4B187ABC]
16

(f) [45223000]
16

(g) [45607000]
16

(h) [C553E100]
16

(i) [437F0001]
16

(j) [1A1A1A1A]
16

Floating Point Arithmetic 47

16. Convert the greatest positive element in Single precision to an octal
number ”o” and write it in normalized floating point notation. Con-
vert then the resulting ”o” to a decimal number ”d” and write it in
normalized floating point notation.

17. Find a method for computing f(x) =
p
x+ 4� 2 accurately when x is

small?

18. What is a good way to compute values of the function f(x) = ex� e if
full machine precision is needed? Note: There is di�culty when x = 1.

19. What problem could the following assignment statement cause?

y 1� sinx

Circumvent it without resorting to a Taylor series if possible.

20. Find a method for computing

y 1

x
(sinhx� tanhx)

that avoids loss of significance when x is small. Find appropriate
identities to solve this problem without using Taylor series.

21. For some values of x, the assignment statement y 1�cosx involves a
di�culty. What is it, what values of x are involved, and what remedy
do you propose?

22. For some values of x, the function f(x) =
p
x2 + 1 � x cannot be

accurately computed by using this formula. Explain and find a way
around the di�culty.

23. The inverse hyperbolic sine is given by f(x) = ln(x+
p
x2 + 1). Show

how to avoid loss of significance in computing f(x) when x is negative.
Hint: Find and exploit the relationship between f(x) and f(�x).

24. Criticize and recode the assignment statement z
p
x4 + 4 � 2 as-

suming that z will sometimes be needed for an x close to zero.

25. How can values of the function f(x) =
p
x+ 2 �

p
x be computed

accurately when x is large?

26. Find a way to calculate f(x) = (cosx�e�x)/ sinx correctly. Determine
f(0.008) correctly to ten decimal places (rounded).

48 N. Nassif and D. Fayyad

27. Let

f(x) =
ex � e�x

x

(a) Find lim
x!0

f(x)

(b) Use 3-digit rounding to the closest arithmetic to evaluate f(0.1).

(c) Replace each exponential function with its 3rd MacLaurin poly-
nomial and repeat part (b).

(d) The actual value is f(0.1) = 2.003335000. Find the relative error
for the values obtained in parts (b) and (c).

28. Write a function procedure that returns accurate values of the hyper-
bolic tangent function

tanhx =
ex � e�x

ex + e�x

for all values of x. Notice the di�culty when |x| < 1

2

.

29. Find ways to compute these functions without serious loss of significant
figures:

(a) ex � sinx� cosx

(b) ln(x)� 1

(c) log x� log (1/x)

(d) x�2(sinx� ex + 1)

(e) arctanhx� x

30. Suppose that two points (x
0

, y
0

) and (x
1

, y
1

) are on a straight line
(L), with y

1

6= y
0

. To find the x-intercept of (L), two formulas are
available:

x =
x
0

y
1

� x
1

y
0

y
1

� y
0

and x = x
0

� (x
1

� x
0

)y
0

y
1

� y
0

Let (x
0

, y
0

) = (1.31, 3.24) and (x
1

, y
1

) = (1.93, 4.76). Use 4-digit
rounding to the closest arithmetic to compute the x-intercept both
ways. Which method gives more accuracy ? Justify.

31. The Taylor polynomial of degree n for f(x) = ex is
P

n

i=0

x

i

i!

. Use the
Taylor polynomial of degree 4 and three-digit chopping arithmetic to
find an approximation to e�5 by each of the following methods:

Floating Point Arithmetic 49

(a) e�5 =
P

8

i=0

(�1)

i

5

i

i!

(b) e�5 = 1

e

5

= 1P
8

i=0

5

i

i!

(c) An approximate value of e�5 correct to three digits is 6.74⇥10�3.
Which formula (a) or (b) gives the most accuracy ? Justify your
answer.

32. Let
f(x) = 1.01e4x � 4.62e3x � 3.11e2x + 12.2ex � 1.99

(a) Use rounding to the closest with a precision p = 3 to evaluate
f(1.53) considering that e1.53 = 4.62

(b) Redo the calculations in part (a) using the Polynomial Nesting
technique described in section 1.3.1.

(c) Compute the absolute and relative errors in parts (b) and (c) if
the true 3-digit result f(1.53) = �7.61.

50 N. Nassif and D. Fayyad

1.8 Computer Projects

Exercise 1 : Conversion: Decimal - Binary

1. Write a MATLAB function:

function [Ibase2, Fbase2, b] = Convert10to2(d, k)

which takes as input a non zero decimal number d and a positive
integer k and converts d to a binary number b up to k fractional digits.
Your function should output the 2 vectors Ibase2 and Fbase2 that
represent respectively the integral and fractional parts of b, and the
binary number b displayed with its sign and its integral and fractional
parts.

2. Write a MATLAB function:

function [Ibase10, Fbase10, d] = Convert2to10(Ibase2, Fbase2)

which takes as input two vectors Ibase2 and Fbase2 that represent
respectively the integral and fractional parts of a binary number, con-
verts them to base 10 and outputs the results as 2 numbers Ibase10
and Fbase10 that are respectively the integral and fractional parts of
the corresponding decimal number d and the decimal number d dis-
played with its sign and its integral and fractional parts.
Hint: Use Nested Polynomial Evaluation.

3. Write a MATLAB function:

function [B, I] = ConvertFraction10to2Pattern(D,m)

which takes as input a decimal integer D consisting of k digits and the
integer m = 10k.
This function converts the decimal fractional f = D

m

into a binary
fractional represented by the vector B, and identifies the repeating
pattern in B (if there is any), starting at component I and ending
at n=length(B). In case the converted fractional part is finite, so no
repeating pattern occurs, the value of I should be zero.
For example:

(a) To convert f = 0.1: input D = 1 and m = 10. This function out-
putsB = [00011] and I = 2, since (0.1)

10

= (0.0 0011 0011 0011)
2

Floating Point Arithmetic 51

(b) To convert f = 0.25: input D = 25 and m = 100. This function
outputs B = 01 and I = 0, since (0.25)

10

= (0.01)
2

.

REMARK To minimize rounding errors in case I is a ”large” number,
it is more e�cient to express fractional numbers as a ratio of 2 integers
(for example f=D/m ...).

4. Test each one of the 3 functions above for 3 di↵erent test cases and
save the results in a word document.

Exercise 2 : Conversion from Double to Single precision

1. Write a MATLAB function:

function [t e f] = GetVectorD(v)

which takes as input a binary vector v of 64 bits or components rep-
resenting a machine number in IEEE - double precision, and extracts
the values of the sign (t), the exponent (e) and the fractional part of
the mantissa (f).

2. Write a MATLAB function:

function x = ConvertDoubletoSingle(v)

which takes as input a binary vector v of 64 bits representing a machine
number in the IEEE double precision system. Your function should
convert v to a single precision machine number and should output the
result as a vector x of 32 bits, unless x represents a ”denormalised
number” or ”Not a Number”. In these 2 cases, your function should
only display a message: ’ x represents NaN ’ or ’ x represents a de-
normalised number ’ .
At the end, if x represents an element of F

S

(2, 24,�126,+127), your
function should also display the corresponding number in normalised
floating point form, i.e. xs = ±1.f⇥2e or xs = ±0. Note the following
remarks:

(a) Use rounding by chopping when needed.(fl
0

).

(b) The smallest single precision denormalised number is: 2�149

(c) For any exponent e < �149, the corresponding number in single
precision is rounded to zero .

52 N. Nassif and D. Fayyad

3. In Exercise 2, test function 1 for 3 di↵erent test cases , then function
2 for 5 di↵erent test cases including: ”NaN’, denormalised numbers,
±0 and ±1. Save the results in a word document.

Call for previous functions when needed.

Exercise 3 : Conversion: Decimal - Octal - Binary

1. Write a MATLAB function:

function [E8 , F8] = Convert2to8(E2, F2)

which takes as input two binary vectors E2 and F2 that are respectively
the integral and fractional parts of a positive binary number b, converts
them to octals and outputs the results as 2 vectors E8 and F8 that
are respectively the integral and fractional parts of a positive octal
number o.

2. Write a MATLAB function:

function [E10, F10, d] = Convert8to10(E8, F8)

which takes as input two octal vectors E8 and F8 that represent respec-
tively the integral and fractional parts of a positive octal number o,
converts them to base 10 and outputs the results as 2 decimal numbers,
E10 and F10 that represent respectively the integral and fractional
parts of the positive decimal number d using Nested Polynomial Evaluation.
At the end, this function should also display d as a decimal number.

3. Test each one of the 2 functions above for 3 di↵erent test cases and
save the results in a word document.(consider di↵erent lengths for all
input vectors).

Exercise 4 : Successors and Rounding Procedures

Let x = +mx ⇥ 10ex be a positive decimal number in F (10, p,�20,+20),
written in normalized floating point form, with �20 ex < +20, and
p < 15.

1. Write a MATLAB function :

function [my, ey] = GetSuccessor(mx, ex, p)

which takes as inputs:

Floating Point Arithmetic 53

• mx : the mantissa of x in standard normalised floating point
notation

• ex : the exponent of x

• p : the precision of the floating point system to which x belongs

Let y be the successor of x in F (10, p,�20,+20). This function should
output:

• my : the mantissa of y displayed with a precision p (the non
significant digits of the fractional part need not be displayed)
HINT : first compute my, then use num2str(my,p) to output
my in the required format

• ey : the exponent of y

2. Let m = +m
1

.m
2

m
3

...m
p

be a positive decimal number whose integral
part is m

1

, and whose fractional part is 0.m
2

m
3

...m
p

.

Write a MATLAB function :

function [m] = ConvertVectortoDecimal(M)

which takes as input a vector M of length p whose ith component is
the decimal digit m

i

, for i = 1, ..., p, and whose output is the decimal
number m represented by M .
Use ” format long g” to display m in double precision, discarding
the non significant zeros of the fractional part .

3. Write a MATLAB function :

function [mz, ez] = Round(Mx, ex, n, t)

which takes as inputs:

• Mx : a vector of length p whose components represent the man-
tissa mx of the decimal number x 2 F (10, p,�20,+20)

• ex : the exponent of x

• n : a positive integer less then or equal to p (n p) , representing
the precision required to reach

• t : a parameter taking the values 1 or 2

This function should compute z: the representative of x in F (10, n,�20,+20)
by rounding x to the closest if t = 1 or by chopping if t = 2, and output

54 N. Nassif and D. Fayyad

• mz : the mantissa of z displayed with a precision n.
HINT : first compute mz, then use num2str(my,n) to output
mz in the required format (the non significant zeros of the frac-
tional part will be discarded)

• ez: the exponent of z

At the end your function should also display z in normalized floating
point representation in F (10, n,�20,+20).

4. Test each one of the 2 functions above for 3 di↵erent test cases and
save the results in a word document.

Remark: Call for previous functions when needed.

