Matlab Assignment 1

Due Date: November 4, 2011

Important Instructions

- Students are allowed to work in groups of 2 ONLY.
- ONLY ONE student from each group should submit the assignment.
- Assignments should be uploaded on Moodle.
- The name of the zipped folder to be uploaded should consist of the IDs of the group members.

Example: 200600000-200600001.zip

- The uploaded zipped folder should include one folder for each exercise, named Ex1, Ex2,...containing Matlab files and word documents for test cases.
- Extra points would be added for checking special cases in the exercises: (ex: validity of the input)
- You are not allowed to use non trivial built-in functions (i.e. functions that do the job for you)!
- Your Assignment will be graded ZERO:
- In all cases of PLAGIARISM (BOTH PROVIDERS AND CHEATERS).
- In case your MATLAB Quiz grade is less then half of the Assignment grade.
- If you need assistance pass by MATLAB-CLINIC during the GA's office hours (or by appointment)

Exercise 1 : Conversion Methods

1. Write a MATLAB function: function $[$ E8 , F8] $=$ Convert2to8(E2, F2)
which takes as input two binary vectors E2 and F2 that are respectively the integral and fractional parts of a positive binary number b, converts them to octals and outputs the results as 2 vectors E8 and F8 that are respectively the integral and fractional parts of a positive octal number o.
2. Write a MATLAB function: function $[$ E10 F10] $=$ Convert8to10(E8, F8)
which takes as input two octal vectors E8 and F8 that represent respectively the integral and fractional parts of a positive octal number o, converts them to base 10 and outputs the results as 2 decimal numbers, E10 and F10 that represent respectively the integral and fractional parts of the positive decimal number d using Nested Polynomial Evaluation. At the end, this function should also display d as a decimal number.
3. Test each one of the 2 functions above for 3 different test cases and save the results in a word document.(consider different lengths for all input vectors).

Exercise 2 : Successors and Rounding Procedures

Let $x=+m x \times 10^{e x}$ be a positive decimal number in $F(10, p,-20,+20)$, written in normalized floating point form, with $-20 \leq e x<+20$, and $p<15$.

1. Write a MATLAB function : function $[\mathbf{m y}, \mathbf{e y}]=\mathbf{G e t S u c c e s s o r}(\mathbf{m x}, \mathbf{e x}, \mathbf{p})$ which takes as inputs:

- $m x$: the mantissa of x in standard normalised floating point notation
- ex : the exponent of x
- p : the precision of the floating point system to which x belongs

Let y be the successor of x in $F(10, p,-20,+20)$. This function should output:

- my : the mantissa of y displayed with a precision p (the non significant digits of the fractional part need not be displayed)
$\underline{\text { HINT : first compute } m y \text {, then use num2str(} \mathbf{m y}, \mathbf{p} \text {) to output } m y \text { in the required format }}$
- ey : the exponent of y

2. Let $m=+m_{1} \cdot m_{2} m_{3} \ldots m_{p}$ be a positive decimal number whose integral part is m_{1}, and whose fractional part is $0 . m_{2} m_{3} \ldots m_{p}$.

Write a MATLAB function : function $[\mathrm{m}]=$ ConvertVectortoDecimal(M) which takes as input a vector M of length p whose $i^{\text {th }}$ component is the decimal digit m_{i}, for $i=1, \ldots, p$, and whose output is the decimal number m represented by M.
Use " format long g" to display m in double precision, discarding the non significant zeros of the fractional part.
3. Write a MATLAB function : function $[\mathbf{m z}, \mathbf{e z}]=\operatorname{Round}(\mathbf{M x}, \mathbf{e x}, \mathbf{n}, \mathrm{t})$ which takes as inputs:

- $M x$: a vector of length p whose components represent the mantissa $m x$ of the decimal number $x \overline{\overline{F(10, p}},-20,+20)$
- ex : the exponent of x
- n : a positive integer less then or equal to $p(n \leq p)$, representing the precision required to reach
- t : a parameter taking the values 1 or 2

This function should compute z : the representative of x in $F(10, n,-20,+20)$ by rounding x to the closest if $t=1$ or by chopping if $t=2$, and output

- mz : the mantissa of z displayed with a precision n.

HINT : first compute $m z$, then use num2str ($\mathbf{m y}, \mathbf{n}$) to output $m z$ in the required format (the non significant zeros of the fractional part will be discarded)

- $e z$: the exponent of z

At the end your function should also display z in normalized floating point representation in $F(10, n,-20,+20)$.
4. Test each one of the 2 functions above for 3 different test cases and save the results in a word document.

Remark: Call for previous functions when needed.

Exercise 3 : Root finding methods

The aim of this exercise is to approximate π by computing the root of $f(x)=\sin (x)$ in the interval $(3,4)$, based on Newton's method. For that purpose:

1. Write 2 MATLAB functions

$$
\begin{aligned}
& \text { function }[\sin x]=\operatorname{mysin}(x, p) \\
& \text { function }[\cos x]=\operatorname{mycos}(x, p)
\end{aligned}
$$

that both input:

- a variable x representing some angle in radians
- a precision p

Using Taylor's series expansion, these functions should compute respectively the sine and cosine of x, up to some tolerance $T o l=0.5 * 10^{(-p+1)}$, and output respectively:

- the values of $\sin x$ or $\cos x$ in $F(10, p,-20,+20)$

HINT : first compute $\sin x$ and $\cos x$, then use num2str(. , p)
Note that:
$\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \ldots$
$\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
N.B. Do not use the MATLAB built in function for the factorials.

Test each of the functions above for $x=\pi / 3, \pi / 4$ and $\pi / 6$ with $p=14$ and save your results in a word document.
2. Write a MATLAB function $[$ root, $\mathbf{k}]=\operatorname{myNewton}(\mathbf{f}, \mathbf{d f}, \mathbf{a}, \mathbf{b}, \mathbf{p}, \mathbf{k m a x})$ that takes as inputs:

- a function f and its derivative $d f$ (as function handles)
- 2 real numbers a and b, where (a, b) is the interval locating the root of f
- a precision p
- a maximum number of iterations $k \max$

Based on Newton's method, this function should output:

- root : the approximation to the root of f up to p decimal figures HINT : first compute root, then use num2str(root , p)
- k : the number of iterations used to reach the required precision p

Tol $=0.5 * 10^{(-p+1)}$ is the relative error bound to the computed root

Test your function for 2 different functions f and save your results in a word document.
3. Write a MATLAB function [mypi, errpi, k] = mypiNewton($\mathbf{p}, \mathbf{k m a x}$) that takes as inputs p and $k \max$ as defined in the previous question.
Applying Newton's method on the interval $(3,4)$ and using the functions mysin and mycos programmed in part 1, this function should output:

- mypi : the approximation to π up to p decimal figures
- errpi : the absolute error $|m y p i-\pi|$ where π is considered in double precision
- k : the number of iterations used in Newton's method to reach the precision p

HINT: Note that after calling the functions myNewton, mysin and mycos, their outputs should be converted back to numbers using the command str2num(.)

Test this function for $k \max =20$ and successively for $p=2,3,7,10,15$. Save your numerical results in a word document.

