Matlab Assignment 1

Due Date: November 4, 2011

Important Instructions

e Students are allowed to work in groups of 2 ONLY.
e ONLY ONE student from each group should submit the assignment.
e Assignments should be uploaded on Moodle.

e The name of the zipped folder to be uploaded should consist of the IDs of the group
members.

Example: 200600000-200600001.zip

e The uploaded zipped folder should include one folder for each exercise, named ExI,
Ex2,...containing Matlab files and word documents for test cases.

e Extra points would be added for checking special cases in the exercises: (ex: validity of
the input)

e You are not allowed to use non trivial built-in functions (i.e. functions that do the job
for you)!

e Your Assignment will be graded ZERO:

— In all cases of PLAGIARISM (BOTH PROVIDERS AND CHEATERS).
— In case your MATLAB Quiz grade is less then half of the Assignment grade.

e If you need assistance pass by MATLAB-CLINIC during the GA’s office hours (or by
appointment)

Exercise 1 : Conversion Methods

1. Write a MATLAB function: function [E8 , F8] = Convert2to8(E2, F2)
which takes as input two binary vectors E2 and F2 that are respectively the integral and
fractional parts of a positive binary number b, converts them to octals and outputs the
results as 2 vectors E8 and F8 that are respectively the integral and fractional parts of a
positive octal number o.

2. Write a MATLAB function: function [E10 F10] = Convert8tol1l0(ES8, F8)
which takes as input two octal vectors E8 and F8 that represent respectively the integral
and fractional parts of a positive octal number o, converts them to base 10 and outputs
the results as 2 decimal numbers, E10 and F10 that represent respectively the integral and
fractional parts of the positive decimal number d using Nested Polynomial Evaluation. At
the end, this function should also display d as a decimal number.

3. Test each one of the 2 functions above for 3 different test cases and save the results in a
word document.(consider different lengths for all input vectors).

Exercise 2 : Successors and Rounding Procedures
Let x = +ma x 10" be a positive decimal number in F(10, p, —20, +20), written in normalized
floating point form, with —20 < ex < +20, and p < 15.

1. Write a MATLAB function : function [my, ey] = GetSuccessor(mx, ex, p) which
takes as inputs:
e mx : the mantissa of z in standard normalised floating point notation
e ex : the exponent of x

e p : the precision of the floating point system to which x belongs
Let y be the successor of x in F'(10, p, —20,+20). This function should output:

e my : the mantissa of y displayed with a precision p (the non significant digits of the
fractional part need not be displayed)
HINT : first compute my, then use num2str(my,p) to output my in the required format

e cy : the exponent of y

2. Let m = +mj.mamg...m, be a positive decimal number whose integral part is m;, and
whose fractional part is 0.moms...my,.

Write a MATLAB function : function [m] = ConvertVectortoDecimal(M) which
takes as input a vector M of length p whose i** component is the decimal digit m;, for
1 =1,...,p, and whose output is the decimal number m represented by M.

Use ” format long g” to display m in double precision, discarding the non significant
zeros of the fractional part .

3. Write a MATLAB function : function [mz, ez] = Round(Mx, ex, n, t) which takes
as inputs:

e Mx : a vector of length p whose components represent the mantissa mxz of the
decimal number z € F' (10, p, —20, +20)

e ex : the exponent of x

e n : a positive integer less then or equal to p (n < p) , representing the precision

required to reach

e ¢ : a parameter taking the values 1 or 2

This function should compute z: the representative of z in F'(10, n, —20, +20) by rounding
x to the closest if £ = 1 or by chopping if t = 2, and output

e mz : the mantissa of z displayed with a precision n.
HINT : first compute mz, then use num2str(my,n) to output mz in the required format (the

non significant zeros of the fractional part will be discarded)

e ez: the exponent of z

At the end your function should also display z in normalized floating point representation
in F(10,n,—20,+20).

4. Test each one of the 2 functions above for 3 different test cases and save the results in a

word document.

Remark: Call for previous functions when needed.

Exercise 3 : Root finding methods
The aim of this exercise is to approximate m by computing the root of f(z) = sin(x)
in the interval (3,4), based on Newton’s method. For that purpose:

1. Write 2 MATLAB functions
function[sinx]= mysin(x, p)
function[cosx]= mycos(x, p)

that both input:

e a variable x representing some angle in radians
e 3 precision p

Using Taylor’s series expansion, these functions should compute respectively the sine and
cosine of , up to some tolerance Tol = 0.5 % 10072+ and output respectively:

e the values of sinx or cosx in F(10,p, —20,+20)
HINT : first compute sinx and cosz, then use num2str(. , p)

Note that: .
. 3 5
sin(s) =5~ 5+ % - %
2 4 6
cos(x) =1—-5 + 5 — G +

N.B. Do not use the MATLAB built in function for the factorials.

Test each of the functions above for x = 7/3,7/4 and 7/6 with p = 14 and save your
results in a word document.

2. Write a MATLAB function [root,k]= myNewton(f, df, a, b, p, kmax) that takes
as inputs:

a function f and its derivative df (as function handles)

2 real numbers a and b, where (a,b) is the interval locating the root of f
e 3 precision p

e a maximum number of iterations kmax
Based on Newton’s method, this function should output:

e root : the approximation to the root of f up to p decimal figures
HINT : first compute root, then use num2str(root , p)

e k : the number of iterations used to reach the required precision p

Tol = 0.5 100-PD ig the relative error bound to the computed root

Test your function for 2 different functions f and save your results in a word document.

3. Write a MATLAB function [mypi, errpi, k|]= mypiNewton(p, kmax) that takes
as inputs p and kmaz as defined in the previous question.
Applying Newton’s method on the interval (3,4) and using the functions mysin and
mycos programmed in part 1, this function should output:

e mypi : the approximation to 7 up to p decimal figures
e errpi : the absolute error |mypi — w| where 7 is considered in double precision
e k: the number of iterations used in Newton’s method to reach the precision p

HINT: Note that after calling the functions myNewton, mysin and mycos , their outputs
should be converted back to numbers using the command str2num(.)

Test this function for kmaxr = 20 and successively for p = 2,3,7,10,15. Save your
numerical results in a word document.

