AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251 TEST 1 SPRING 2008-2009 Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	13	
2	12	
3	14	
4	11	
TOTAL	50	

1. Determine the decimal number x in F(10, 5, -60, +60), that has the following hexadecimal representation in the IEEE single precision system. (Round to the closest, if needed.)

$$x = [7D187ABC]_{16}$$

2. (i) - What are the numbers in the IEEE single precision system F_S , immediately to the right and to the left of $x = 2^m$. (i.e succ(x) and pre(x)). How far is each from 2^m ? Discuss the case m = -126, identify pre(x) in that case, then write the Binary string representation of pre(x) in F_S .

• m = -126

• m = -126

-
$$pre(x) =$$

- Binary Bit-string representation of $\operatorname{pre}(\mathbf{x})$:

(ii) - Determine the Cardinality of F_S .

3. Prove that the function f(x) = ln(1-x) - e^x, defined for x < 1, has a unique negative root, then locate the root:
(a) - By plotting both functions g(x) = ln(1-x) and h(x) = e^x.

(b) By studying the behaviour of f(x) and f'(x) on $(-\infty, 1)$

(ii) - How many steps of the bisection method are approximately needed to provide an approximation to a root ${\bf r}$, up to 4 decimal figures ?

(iii) - Apply 2 iterations of the Bisection method, to approximate the root of f(x). Give the results in F(10, 4, -20, +20), rounding to the closest if necessary.

 $r_1 =$

 $r_{2} =$

(iv) - Write Newton's iteration formula, then find one iteration in F(10, 4, -20, +20), rounding to the closest if necessary.

 $r_{n+1} =$

$$r_{3} =$$

(v) - Write the Secant method iteration formula, then find one iteration in F(10, 4, -20, +20), rounding to the closest if necessary.

 $r_{n+1} =$

 $r_{3} =$

4. Consider the following n * n quadridiagonal matrix

	$\int d_1$	u_1	0	• • •	•••	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
								0
	v_1	l_2	d_3	u_3	0	•••	0	0
	0	v_2	l_3	d_4	u_4	0	• • •	0
	0	0	v_3	l_4	d_5	u_5	• • •	0
	:	÷	÷	÷	÷	:	÷	\vdots u_{n-1}
	0	0	•••	0	v_{n-3}	l_{n-2}	d_{n-1}	u_{n-1}
	0	0	•••	0	0	v_{n-2}	l_{n-1}	d_n

This matrix is assumed to have the diagonal dominance property: As such we can use naive Gauss elimination to reduce it into an upper triangular matrix.

(i) - Complete the following algorithm that should perform the reduction of the matrix A:

```
function [d,u,l,v]=lu_QuadriDiag(d,u,l,v)
% d is the diagonal vector. Its dimension is n
% u is the upper diagonal vector. Its dimension is n-1
\% l is the first lower diagonal vector. Its dimension is n-1
\% v is the second lower diagonal vector. Its dimension is n-2
for k = 1 : n-1
% Get the multipliers (take into consideration the last iteration)
   if .....
        end
\% Modify the coefficients (take into consideration the last iteration)
   . . . . . . . . . . . . .
   if .....
        end
end
```

(ii) - Find the number of flops needed to execute the above algorithm.

(iii) - Give the Upper Triangular matrix U obtained from this reduction.