AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251

TEST 1
SPRING 2008-2009
Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	13	
2	12	
3	14	
4	11	
TOTAL	50	

1. Determine the decimal number x in $F(10,5,-60,+60)$, that has the following hexadecimal representation in the IEEE single precision system. (Round to the closest, if needed.)

$$
x=[7 D 187 A B C]_{16}
$$

2. (i) - What are the numbers in the IEEE single precision system F_{S}, immediately to the right and to the left of $x=2^{m}$. (i.e $\operatorname{succ}(\mathrm{x})$ and pre(x)). How far is each from 2^{m} ?
Discuss the case $m=-126$, identify pre(x) in that case, then write the Binary string representation of pre(x) in F_{S}.

- $\mathrm{m}=-126$

$$
\text { - } \mathrm{m}=-126
$$

$$
-p r e(x)=
$$

- Binary Bit-string representation of pre(x):
(ii) - Determine the Cardinality of F_{S}.

3. Prove that the function $f(x)=\ln (1-x)-e^{x}$, defined for $x<1$, has a unique negative root, then locate the root:
(a) - By plotting both functions $g(x)=\ln (1-x)$ and $h(x)=e^{x}$.
(b) By studying the behaviour of $f(x)$ and $f^{\prime}(x)$ on $(-\infty, 1)$
(ii) - How many steps of the bisection method are approximately needed to provide an approximation to a root r, up to 4 decimal figures ?
(iii) - Apply 2 iterations of the Bisection method, to approximate the root of $f(x)$. Give the results in $F(10,4,-20,+20)$, rounding to the closest if necessary.
$r_{1}=$
$r_{2}=$
(iv) - Write Newton's iteration formula, then find one iteration in $F(10,4,-20,+20)$, rounding to the closest if necessary.
$r_{n+1}=$
$r_{3}=$
(v) - Write the Secant method iteration formula, then find one iteration in $F(10,4,-20,+20)$, rounding to the closest if necessary.
$r_{n+1}=$
$r_{3}=$
4. Consider the following $n * n$ quadridiagonal matrix

$$
A=\left(\begin{array}{cccccccc}
d_{1} & u_{1} & 0 & \cdots & \cdots & 0 & 0 & 0 \\
l_{1} & d_{2} & u_{2} & 0 & \cdots & \cdots & 0 & 0 \\
v_{1} & l_{2} & d_{3} & u_{3} & 0 & \cdots & 0 & 0 \\
0 & v_{2} & l_{3} & d_{4} & u_{4} & 0 & \cdots & 0 \\
0 & 0 & v_{3} & l_{4} & d_{5} & u_{5} & \cdots & 0 \\
\vdots & \vdots \\
0 & 0 & \cdots & 0 & v_{n-3} & l_{n-2} & d_{n-1} & u_{n-1} \\
0 & 0 & \cdots & 0 & 0 & v_{n-2} & l_{n-1} & d_{n}
\end{array}\right)
$$

This matrix is assumed to have the diagonal dominance property: As such we can use naive Gauss elimination to reduce it into an upper triangular matrix.
(i) - Complete the following algorithm that should perform the reduction of the matrix A :

```
function [d,u,l,v]=lu_QuadriDiag(d,u,l,v)
% d is the diagonal vector. Its dimension is n
%u}\mathrm{ is the upper diagonal vector. Its dimension is n-1
% l is the first lower diagonal vector. Its dimension is n-1
% v is the second lower diagonal vector. Its dimension is n-2
for k = 1 : n-1
% Get the multipliers (take into consideration the last iteration)
    if
    end
% Modify the coefficients (take into consideration the last iteration)
        if
        end
    end
```

(ii) - Find the number of flops needed to execute the above algorithm.
(iii) - Give the Upper Triangular matrix U obtained from this reduction.

