AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences <u>Mathematics Department</u>.

MATH 251 Quizz I Fall 2008 – 2009 Closed Book, 75 minutes

STUDENT NAME : ______.

ID NUMBER : ______.

Problem 1 (11 points):	<u>.</u>
Problem 2 (7 points):	<u> </u>
Problem 3 (9 points):	
Problem 4 (15 points):	
Problem 5 (8 points):	•

1. Determine the hexadecimal representation of the decimal number $x = (-285.756)_{10}$ in single precision. Use the <u>octal system</u> as an intermediate stage.

(11 points)

2. (a) - What is the bit string representation of the denormalized number x_d in the IEEE single precision floating point system F_s . (Use fl = fl₀ if needed)

$$x_d = \sum_{k=127}^{150} 2^{-k} = 2^{-127} + 2^{-128} + 2^{-129} + \dots + 2^{-150}$$

(b) Find $succ(x_d)$ and identify this element

(7 points)

3. –Determine the values of x for which the following functions involve a difficulty. What is it ? What remedy do you propose ?

(9 points)

$$a - f(x) = \frac{e^{2x} - 1}{2x}$$

$$b - g(x) = \sqrt[4]{x + 4} - \sqrt[4]{x}$$

4. The reciprocal of the cubic root of 2 (i.e. $\frac{1}{2^{1/3}}$), can be computed by an iterative formula that does not use division by the iterate. (15 points)

a - Establish this formula by applying Newton's method to some appropriate function <math>f(x) and draw its graph.

.

b – Determine any necessary restrictions on the choice of the initial value r_0 of this iterative procedure. Give a graphic justification to the necessity of this restriction.

c – Approximate $\frac{1}{2^{1/3}}$ up to 3 decimal places. Compare the number of iterations needed to reach this precision with the predicted number of iterations of the Bisection method. Justify your results.

5. - Fill in the missing statements in the following Matlab program that computes the polynomial p(x) for $x \in R$, using nested multiplication.

$$p(x) = a(1) + a(2)x + a(3)x^{2} + \dots + a(n+1)x^{n}$$

- Find then the number of floating point operations needed to execute the algorithm. (Detail your counting)

(8 points)

function [p]= Nested(a, x)

_

% Input arguments: the vector *a* representing the coefficients a(1), a(2), ..., a(n+1), and % a real number x

% Output argument : p = p(x) : the value of the polynomial at x

m =; % the number of components of a
p =; % Initialize p
for i =;
p =;
end