AMERICAN UNIVERSITY OF BEIRUT

Faculty of Arts and Sciences

Mathematics Department

MATH 251

Quizz I
Fall 2008-2009
Closed Book, 75 minutes

STUDENT NAME : \qquad
ID NUMBER :

Problem 1 (11 points): \qquad
Problem 2 (7 points): \qquad
Problem 3 (9 points): \qquad
Problem 4 (15 points):
Problem 5 (8 points):

1. Determine the hexadecimal representation of the decimal number $x=(-285.756)_{10}$ in single precision. Use the octal system as an intermediate stage.
2. (a) - What is the bit string representation of the denormalized number x_{d} in the IEEE single precision floating point system F_{S}. (Use $\mathrm{fl}=\mathrm{fl}_{0}$ if needed)

$$
x_{d}=\sum_{k=127}^{150} 2^{-k}=2^{-127}+2^{-128}+2^{-129}+\ldots+2^{-150}
$$

(b) Find $\operatorname{succ}\left(\mathrm{x}_{\mathrm{d}}\right)$ and identify this element
3. -Determine the values of x for which the following functions involve a difficulty. What is it? What remedy do you propose ?
$\mathrm{a}-f(x)=\frac{e^{2 x}-1}{2 x}$
$\mathrm{b}-g(x)=\sqrt[4]{x+4}-\sqrt[4]{x}$
4. The reciprocal of the cubic root of 2 (i.e. $\frac{1}{2^{1 / 3}}$), can be computed by an iterative formula that does not use division by the iterate.
(15 points)
a - Establish this formula by applying Newton's method to some appropriate function $f(x)$ and draw its graph.
b - Determine any necessary restrictions on the choice of the initial value r_{0} of this iterative procedure. Give a graphic justification to the necessity of this restriction.
c - Approximate $\frac{1}{2^{1 / 3}}$ up to 3 decimal places. Compare the number of iterations needed to reach this precision with the predicted number of iterations of the Bisection method. Justify your results.
5. - Fill in the missing statements in the following Matlab program that computes the polynomial $\mathrm{p}(\mathrm{x})$ for $x \in R$, using nested multiplication.

$$
p(x)=a(1)+a(2) x+a(3) x^{2}+\ldots .+a(n+1) x^{n}
$$

- Find then the number of floating point operations needed to execute the algorithm. (Detail your counting)

function [p]=Nested $(\boldsymbol{a}, \mathbf{x})$

\% Input arguments: the vector a representing the coefficients $a(1), a(2), \ldots, a(\mathrm{n}+1)$, and \% a real number x
\% Output argument : $\mathrm{p}=\mathrm{p}(\mathrm{x})$: the value of the polynomial at x

```
mm = ._.....................................; % the number of components of a
p = ............................................; % Initialize p
for i=
    p =
end
```

