AMERICAN UNIVERSITY OF BEIRUT
 Faculty of Arts and Sciences
 Mathematics Department

MATH 251/CMPS 251
MID TERM EXAMINATION
FALL 2004-2005
Closed Book, One hour 15 minutes

SUBMIT THE QUESTION SHEET WITH BOOKLET (ONLY SCIENTIFIC CALCULATORS ARE ALLOWED. PROGRAMMABLE AND GRAPHIC CALCULATORS ARE FORBIDDEN)

STUDENT NAME	
ID NUMBER	

1. Let $x \in \mathbb{F} \equiv \mathbb{F}\left(b, p, e_{\min }, e_{\max }\right)$, with $x= \pm m \times b^{e}$.
-(5 points) Fill in the bounds on m

$$
\ldots \ldots \ldots \ldots . ~ \leq m \leq ~
$$

and if $m_{2}=\operatorname{succ}\left(m_{1}\right)$, both m_{1} and m_{2} mantissas in \mathbb{F}, find $m_{2}-m_{1}$.
-(5 points) Assume $b=2, p=5, e_{\text {min }}=-3, e_{\max }=3$. How many positive numbers does \mathbb{F} includes? -(10 points)Fill in the missing statements in the following MATLAB program that generates the non-negative elements of a floating-point system $\mathbb{F}\left(b, p, e_{\min }, e_{\max }\right)$.

```
function x=float(b,p,emin,emax)
x=0;
epsm=b^(-p+1);
%M represents all possible values taken by the mantissa
M=. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;
E=1;
for
    x=[x ..........................];
    E=E. . . . . . . . . . . . . . . . . . . . . . . . . . ;
end
E=
for
    x=[x .....................];
    E=E
end
```

-(5 points) How many floating-point operations (additions and multiplications) would be required to execute the above program.
2. Consider the floating-point system $\mathbb{F}=\mathbb{F}(10,6,-4,5)$. This system uses rounding to the closest.
(a) Fill in the following table. (10 points)

Values of following parameters in \mathbb{F}	
$x_{\min }$	
$x_{\max }$	
$\epsilon_{M}($ epsilon machine $)$	
Representation of $\frac{1}{11}$	
$\operatorname{succ}\left(\frac{1}{11}\right)$	

(b) (10 points) Convert $x=-(652.2025)_{10}$ into octal form? Give then the hexadecimal form of the internal IEEE single precision floating point representation of x, using rounding to the closest.

Conversion of $x=-(652.2025)_{10}$	to octal and IEEE hexadecimal form
Corresponding octal form	
Corresponding IEEE hexadecimal form	

3. Consider the function $f(x)=e^{-x}-\sin (x)$.
(a) (5 points) How many roots does this function have on (0,4). Graph this function on this interval and locate the first root r of $f(x)$.
(b) (5 points) Find the least number of iterations that provide an approximation to r within 5 significant figures using the bisection method.

Number of iterations:

IN WHAT FOLLOWS CARRY ALL YOUR COMPUTATIONS WITH AT LEAST 5 FIGURES

(c) (10 points) Compute the following iterations:
-Give the sequence of 2 approximations obtained by applying 2 iterations of the bisection method with $a=0, b=1$.

$x_{1}:$	
$x_{2}:$	

-Give the iteration function $r_{n}=g\left(r_{n-1}\right)$ of Newton's method :

Then compute the sequence of 2 approximations obtained by applying 2 iterations of Newton's method with $x_{0}=0.5$.

$x_{1}:$	
$x_{2}:$	

-Give the iteration function $r_{n}=g\left(r_{n-1}, r_{n-2}\right)$ of the secant method:

Then give the sequence of 2 approximations obtained by applying 2 iterations of the secant method with $x_{0}=1$ and $x_{1}=0.5$.

$x_{1}:$	
$x_{2}:$	

4. Consider finding the cubic root r of a positive number $a, r=a^{1 / 3}$. Write Newton's process that would yield an approximation to r. Does it converge for any initial choice of the iteration? Justify by any argument.
