AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 251/CMPS 251 MID TERM EXAMINATION FALL 2004-2005 Closed Book, One hour 15 minutes

SUBMIT THE QUESTION SHEET WITH BOOKLET (ONLY SCIENTIFIC CALCULATORS ARE ALLOWED. PROGRAMMABLE AND GRAPHIC CALCULATORS ARE FORBIDDEN)

STUDENT NAME	
ID NUMBER	

1. Let $x \in \mathbb{F} \equiv \mathbb{F}(b, p, e_{min}, e_{max})$, with $x = \pm m \times b^e$.

-(5 points) Fill in the bounds on m

and if $m_2 = succ(m_1)$, both m_1 and m_2 mantissas in \mathbb{F} , find $m_2 - m_1$.

 $m_2 - m_1 = \dots$

-(5 points) Assume b = 2, p = 5, $e_{min} = -3$, $e_{max} = 3$. How many **positive numbers** does \mathbb{F} includes? -(10 points)Fill in the missing statements in the following MATLAB program that generates the non-negative elements of a floating-point system $\mathbb{F}(b, p, e_{min}, e_{max})$.

-(5 points) How many floating-point operations (additions and multiplications) would be required to execute the above program.

- 2. Consider the floating-point system $\mathbb{F} = \mathbb{F}(10, 6, -4, 5)$. This system uses rounding to the closest.
 - (a) Fill in the following table. (10 points)

the hoating-point	r = r(10, 0, -	-4, 5). This sys
est.		
in the following t	able. (10 points)	
	Values of following par	rameters in \mathbb{F}
	x_{\min}	
	x_{\max}	
	ϵ_M (epsilon machine)	
	Representation of $\frac{1}{11}$	
	$\operatorname{succ}(\frac{1}{11})$	

(b) (10 points) Convert $x = -(652.2025)_{10}$ into octal form? Give then the hexadecimal form of the internal IEEE single precision floating point representation of x, using rounding to the closest.

Conversion of $x = -(652.2025)_{10}$	to octal and IEEE hexadecimal form
Corresponding octal form	
Corresponding IEEE hexadecimal form	

- 3. Consider the function $f(x) = e^{-x} \sin(x)$.
 - (a) (5 points) How many roots does this function have on (0, 4). Graph this function on this interval and locate the first root r of f(x).

(b) (5 points) Find the least number of iterations that provide an approximation to r within 5 significant figures using the bisection method.

Number of iterations :

IN WHAT FOLLOWS CARRY ALL YOUR COMPUTATIONS WITH AT LEAST 5 FIGURES

(c) (10 points) Compute the following iterations :

-Give the sequence of 2 approximations obtained by applying 2 iterations of the bisection method with a = 0, b = 1.

x_1 :	
x_2 :	

-Give the iteration function $r_n = g(r_{n-1})$ of Newton's method :

Then compute the sequence of 2 approximations obtained by applying 2 iterations of Newton's method with $x_0 = 0.5$.

x_1 :	
x_2 :	

-Give the iteration function $r_n = g(r_{n-1}, r_{n-2})$ of the secant method :

Then give the sequence of 2 approximations obtained by applying 2 iterations of the secant method with $x_0 = 1$ and $x_1 = 0.5$.

x_1 :	
x_2 :	

4. Consider finding the cubic root r of a positive number $a, r = a^{1/3}$. Write Newton's process that would yield an approximation to r. Does it converge for any initial choice of the iteration? Justify by any argument.