AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251

TEST 1
FALL 2010-2011
Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	13	
2	12	
3	13	
4	12	
TOTAL	50	

1. (13 points) Determine the Hexadecimal representation of the decimal number

$$
x=-318.724 \times 10^{-24}
$$

in F_{S} (single precision). Use the approximation $10^{3} \approx 2^{10}$ and rounding to the closest if necessary.
$(x)_{2}=$
(7 points)

Bit-String Representation of $(x)_{2}$ in F_{S} :
(4 points)
$\underline{\text { Hexadecimal representation of } x \text { in } F_{S}}$: (2 points)

2. (12 points)

(a) - What are the numbers in the IEEE Single precision system F_{S} immediately to the right or to the left of $x=2^{m}$ (i.e respectively the successor of x denoted $\operatorname{succ}(x)$, and the predecessor of x denoted pre (x)), in the following cases:

- $x=2^{m}$ with $-126<m<+127$ pre $(\mathrm{x})=$
(2 points)

$$
\operatorname{succ}(x)=
$$

- $x=2^{m}$ with $m=-126$. Identify pre (x), then write its Binary bit string representation in F_{S}.
pre $(x)=$
(1.5 points)

Binary Bit string representation of $\operatorname{pre}(x)$:
(1.5 points)
(b) - Determine the values of x for which the following function involves a difficulty. What is it? What remedy do you propose?
(5 points)

$$
f(x)=(\sqrt{x+4})^{1 / 2}-(\sqrt{x})^{1 / 2}
$$

3. (13 points)
(a) Locate the roots of $f(x)=e^{-x}+x^{2}-x-5$, and show the results on a graph.
(b) Use Newton's method to approximate the negative root of f up to 4 decimal figures. Express all your computed results in $F(10,5,-20,+20)$; round to the closest if needed.
(6 points)
(c) How many iterations are theoretically needed to reach such precision using the Bisection method? Compare with the number of iterations used in (b), and justify the results.
(3 points)
4. (12 points) An $(n \times n)$ - tridiagonal matrix A_{n} is a matrix for which all the elements are zeros, except those on the 3 Diagonals. It is defined as follows:

$$
A_{n}=\left[\begin{array}{cccccc}
a 1 & b 1 & 0 & 0 & \ldots & 0 \\
c 1 & a 2 & b 2 & 0 & \ldots & 0 \\
0 & c 2 & a 3 & b 3 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & c_{n-2} & a_{n-1} & b_{n-1} \\
0 & \ldots & 0 & 0 & c_{n-1} & a_{n}
\end{array}\right]
$$

(a) Apply the Naive Gauss elimination on the following (4×4) tridiagonal matrix A_{4}. Determine at each reduction the multipliers and the modified elements of the matrix.
(6points)

$$
A_{4}=\left[\begin{array}{cccc}
1 & 5 & 0 & 0 \\
2 & 2 & 7 & 0 \\
0 & 1 & 4 & -1 \\
0 & 0 & -2 & 3
\end{array}\right]
$$

(b) Extract the Upper Triangular matrix U_{4} obtained at the end of this process:
(2 points)
$U_{4}=$
(c) If the Naive Gauss reduction is applied on the tridiagonal matrix A_{n}, deduce from the results obtained in(a) and (b)

- Which elements of A are modified at each reduction: (2 points)
- What is the form of the Upper triangular matrix U_{n} extracted at the end of the process:
(2 points)
$U_{n}=$

