AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251 TEST 1 FALL 2010-2011 Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	13	
2	12	
3	13	
4	12	
TOTAL	50	

 (13 points) Determine the Hexadecimal representation of the decimal number

$$x = -318.724 \times 10^{-24}$$

in F_S (single precision). Use the approximation $10^3 \approx 2^{10}$ and rounding to the closest if necessary.

(7 points)

 $\frac{\text{Bit-String Representation of } (x)_2 \text{ in } F_S:}{}$

(4 points)

 $\underline{\text{Hexadecimal representation of } x \text{ in } F_S:}$

(2 points)

2. (12 points)

(a) - What are the numbers in the IEEE Single precision system F_S immediately to the right or to the left of $x = 2^m$ (i.e respectively the successor of x denoted succ(x), and the predecessor of x denoted pre(x)), in the following cases:

• $x = 2^m$ with -126 < m < +127pre(x) = (2 points)

 $\operatorname{succ}(x) =$

(2 points)

• $x = 2^m$ with m = -126. Identify pre(x), then write its Binary bit string representation in F_S . pre(x) = (1.5 points)

Binary Bit string representation of pre(x): (1.5 points)

(b) - Determine the values of x for which the following function involves a difficulty. What is it ? What remedy do you propose ?

(5 points)

$$f(x) = (\sqrt{x+4})^{1/2} - (\sqrt{x})^{1/2}$$

•

3. (13 points)

(a) Locate the roots of $f(x) = e^{-x} + x^2 - x - 5$, and show the results on a graph. (4 points)

(b) Use Newton's method to approximate the **negative** root of f up to 4 decimal figures. Express all your computed results in F(10, 5, -20, +20); round to the closest if needed. (6 points)

(c) How many iterations are theoretically needed to reach such precision using the Bisection method ? Compare with the number of iterations used in (b), and justify the results. (3 points)

4. (12 points) An $(n \times n)$ - tridiagonal matrix A_n is a matrix for which all the elements are zeros, except those on the 3 Diagonals. It is defined as follows:

	a1	b1	0	0		0]	
	c1	a2	b2	0		0	
	0	c2	a3	b3		0	
$A_n =$							
				c_{n-2}	a_{n-1}	b_{n-1}	
	0		0	0	c_{n-1}	a_n	

(a) Apply the **Naive Gauss** elimination on the following (4×4) tridiagonal matrix A_4 . Determine at each reduction the multipliers and the modified elements of the matrix. (6points)

$$A_4 = \begin{bmatrix} 1 & 5 & 0 & 0 \\ 2 & 2 & 7 & 0 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & -2 & 3 \end{bmatrix}$$

(b) Extract the Upper Triangular matrix U_4 obtained at the end of this process: (2 points) $U_4 =$

•••

- (c) If the Naive Gauss reduction is applied on the tridiagonal matrix A_n , deduce from the results obtained in(a) and (b)
 - Which elements of A are modified at each reduction: (2 points)

• What is the form of the Upper triangular matrix U_n extracted at the end of the process: (2 points)

 $U_n =$