AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251
FINAL EXAM
FALL 2010-2011

Closed Book, 2hours

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	15	
2	20	
3	15	
4	18	
5	20	
6	12	
TOTAL	100	

1. (15 points) Use of the standard formulae to solve the quadratic equation

$$
(*) \quad x^{2}-10^{3} x+1=0 \quad \text { in } F(10,5,-20,+20)
$$

will cause a problem. Investigate this example, observe the difficulty, and propose a remedy to express the solutions x_{1} and x_{2} of the given equation in F, rounding to the closest. In this view:
(a) (5 pts) Compute the discriminant Δ of the quadratic equation $(*)$, in $F(10,5,-20,+20)$:
(b) (5 pts) Compute the roots of $(*)$, in $F(10,5,-20,+20)$:
(c) (5 pts) Suggested remedy to compute the solutions of $(*)$ in $F(10,5,-20,+20)$:
2. (20 points) The reciprocal of the $3^{r d}$ root of a negative integer a (i.e. $r=\frac{1}{a^{1 / 3}}, a<0$) can be computed by an iterative formula that does not require division by the iterate.
(a) (5 pts)Establish this formula by applying Newton's method to some appropriate function $f(x)$, and draw the graph of $f(x)$.
(b) (5 pts)Determine any necessary restrictions on the choice of the initial value of this iterative procedure.
(c) (5 pts)Prove that Newton's method is Quadratic.
(d) $(5 \mathrm{pts})$ Prove that $r_{n+1}-r=\left(r_{n}-r\right)^{2} F\left(r_{n}\right)$ where F is a quadratic polynomial in r_{n}, to be determined.
3. (15 points) Consider the following set of data
$D_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \mid y_{i}=f\left(x_{i}\right), \forall i=1, \ldots, n ; f:\right.$ unknown function $\}$
where the x -nodes are equally spaced.
(a) (5 pts)

- Write the 1 st order difference operator then the recurrence formula for the kth order difference operators
$\Delta^{1} y_{i}=\Delta y_{i}=$ \qquad ; for $i=$
for $k=1$ to \qquad
$\Delta^{k} y_{i}=$ \qquad for $\mathrm{i}=$
- Write the formula of Newton's interpolating polynomial $p_{12 . . n}(x)$ based on D_{n} using the difference operators.
$p_{12 . . n}(x)=$
(b) (10 pts)Write a MATLAB function:

```
function[DF, pa]=DifferencesNewton(x,y,a)
```

which takes as input the 2 vectors x and y defined above and a real number a, and returns:

- a lower triangular matrix $D F$ of size $n \times n$ whose entries are the differences of all orders based on the set D_{n}
- the real number $p a=p_{12 \ldots n}(a)$ which represents the approximation of $f(a)$ using Newton's interpolating polynomial based on D_{n}.
function[DF, pa]=DifferencesNewton(x,y,a)
\% Do NOT check any applicability condition.
$\mathrm{n}=$ length (x) ;
DF $=$ zeros (n, n) ;
\% The entries of the first column of $D F$ are the components of the \% y-vector
\% The remaining columns of DF are differences of all orders
\% pa = Newton's Interpolating Polynomial evaluated at a \% HINT : if convenient, you may use the MATLAB built- in function \% computing factorial of n : factorial(n)
end

4. (18 points) An integral of the form $I=\int_{0}^{\infty} f(x) d x$ can be transformed into an integral on a finite interval by making a change of variable. For instance, the substitution $x=-\ln y$ changes the integral $I=\int_{0}^{\infty} f(x) d x$ into $J=\int_{0}^{1} g(y) d y$, where $g(0)=\lim _{y \rightarrow 0} g(y)=0$.
(a) (5 pts) Use this idea and write the integral J equivalent to the integral $I=\int_{0}^{\infty}\left[e^{-x} /\left(1+x^{2}\right)\right] d x$
(b) (8 pts)Compute J by means of the Composite Trapezoidal rule, using 3 equally spaced partition points then find an upper bound for the error incurred in this approximation, knowing that $\max _{0 \leq y \leq 1}\left|g^{\prime \prime}(y)\right|=M$.
(c) $(5 \mathrm{pts})$ Apply the 1 st order Romberg scheme to improve the results obtained in part (b).

Express ALL the numerical results of this exercise in $F(10,5,-15,+15)$, rounding to the closest if needed.

5. (20 points)

Let $D_{n}=\left\{\left(x_{i}, y_{i}\right) \mid i=0,1, \ldots, n=2 m\right.$, where $\left.\left.y_{i}=f\left(x_{i}\right)\right)\right\}$ be a given set of data, where the x -coordinates are equally spaced, and where n is an even integer.
(a) (5 pts)Based on the set D_{n}, prove that the 1st Romberg operator applied to the composite Trapezoid rule is equivalent to Simpson's rule, that is prove that: $R^{1}(h)=S(h)$.
(b) (5 pts)Derive the first 2 Romberg approximation formulae: $S^{1}(h)$ and $S^{2}(h)$, applied to the Composite Simpson's rule, given that:

$$
I=S(h)+s_{1} h^{4}+s_{2} h^{6}+\ldots . .+s_{j} h^{2 j+2}+\ldots .
$$

(c) (10 pts) The next question deals with the following set of values for a function $f(x)$, arranged in a table as follows:

i	x_{i}	$f\left(x_{i}\right)$
0	0.000	1.0000
1	0.125	1.1108
2	0.250	1.1979
3	0.375	1.2663
4	0.500	1.3196
5	0.625	1.3600
6	0.750	1.3895
7	0.875	1.4093
8	1.000	1.4207

In order to approximate $\int_{0}^{1} f(x) d x$, based on Simpson's rule and the formulae obtained in (a) and (b), fill in the empty slots of the following table adequately. Express all your results in $F(10,5,-15,+15)$.

h	$T(h)$	$S(h)$	$S^{1}(h)$	$S^{2}(h)$
$h_{0}=1$				
$h_{0} / 2=0.5$				
$h_{0} / 4=0.250$				
$\frac{h_{0}}{8}=0.1250$				

6. (12 points) Consider the following Initial value Problem:

$$
(I V P)\left\{\begin{array}{l}
\frac{d y}{d t}=t^{3}+y ; \quad t \in[1,2] \\
y(1)=3
\end{array}\right.
$$

To solve (IVP) in $F(10,4,-20,+20)$ (rounding to the closest):
(a) (5 pts) (IVP) is first solved on $[1,1.5]$ using the discrete scheme of Euler's method: (RK1).

- Write first the formulae for this scheme:
- Use 2 steps ONLY of this scheme to approximate $y(1.25)$ and $y(1.50)$.

i	t_{i}	y_{i}	k_{1}	y_{i+1}
0	1.00	\cdot	\cdot	\cdot
1	\cdot	\cdot	\cdot	\cdot
2	\cdot	\cdot	\cdot	\cdot

(b) $(7 \mathrm{pts})(\mathrm{IVP})$ is then solved on $[1.5,2]$ using the discrete scheme of the 2nd order Runge Kutta method - Midpoint Rule: (RK2.M).

- Write then the formulae of this scheme:
- Use 2 steps ONLY of this scheme to approximate $y(1.75)$ and $y(2.00)$.

i	t_{i}	y_{i}	k_{1}	k_{2}	y_{i+1}
0	1.50	\cdot	\cdot	\cdot	\cdot
1	\cdot	\cdot	\cdot	\cdot	\cdot
2	\cdot	\cdot	\cdot	\cdot	\cdot

