AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 251 QUIZ II FALL 2009-2010 Closed Book, 75 MINUTES

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	16	
2	13	
3	13	
4	8	
TOTAL	50	

1. Consider a function f(x) given at 4 distinct data points by the following table:

i	x _i	yi
0	1.0	0
1	1.5	1.76
2	2.0	3.01
3	3.0	4.77

(a) Use this table to create a lower triangular matrix whose entries are Neville's interpolating polynomials of all orders.
<u>Note</u>: Show the details of your calculations in the space left below

i	$\mathbf{x_i}$	$\mathbf{y}_i = \mathbf{p}_i(\mathbf{x})$	$] \dots p_{i,i+1}(x) \dots \dots$	$p_{i,i+1,i+2}(x)$	$\dots p_{i,i+1,i+2,i+3}(x)\dots$
0	1.0	0	•		
1	1.5	1.7	•	•	•
2	2.0	3.0	•		
3	3.0	4.7	•	•	•

.....

(b) Approximate f(1.25), using the most suitable **Quadratic** interpolation polynomial.

(c) Based on the EXISTENCE and UNIQUENESS properties of $p_{0123}(x)$, and using the LEAST number of additional parameters, find a polynomial that takes the values shown in the given table, and has at x = 4 the value 5.(Note that $p_{0123}(4) = 5.5$) 2. Determine the Natural Quadratic Spline based on the first 3 nodes of the Table given in exercise 1.

3. MATLAB QUESTION : NAIVE GAUSS

4. The objective of this exercise is to set a procedure that finds the LUdecomposition of A^T , as the product of a lower unit triangular matrix L_1 , and an upper triangular matrix V, based **only** on the LUdecomposition of the matrix A itself.

In this view, consider the following LU- decomposition of the matrix A obtained through the Naive Gaussian elimination procedure

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ -2 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix} = LU$$

(a) Determine the matrices D and U_1 that factor the matrix U as the product of a diagonal matrix D = Diag(U) and a Unit Upper triangular matrix U_1 , where:

$$U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} . & 0 & 0 \\ 0 & . & 0 \\ 0 & 0 & . \end{bmatrix} \begin{bmatrix} 1 & . & . \\ 0 & 1 & . \\ 0 & 0 & 1 \end{bmatrix} = DU_1$$

(b) Determine then, the lower triangular matrix M that factors A as $A = MU_1$.

$$M = \left[\begin{array}{rrr} \cdot & 0 & 0 \\ \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot \end{array} \right]$$

Justify the results:

(c) Based on the results above, express A^T as the product $A^T = L_1 V$ where L_1 is a unit Lower triangular matrix, and V is an upper triangular matrix. (<u>Hint</u>: $(XY)^T = Y^T X^T$)

$$L_{1} = \begin{bmatrix} 1 & 0 & 0 \\ . & 1 & 0 \\ . & . & 1 \end{bmatrix}$$
$$V = \begin{bmatrix} . & . & . \\ 0 & . & . \\ 0 & 0 & . \end{bmatrix}$$

Justify the results:

- (d) Identify (DO NOT CALCULATE) the multipliers used at each reduction if the Naive Gauss elimination were applied on the matrix A^T .
 - Multipliers of Reduction 1:
 - Multipliers of Reduction 2: