AMERICAN UNIVERSITY OF BEIRUT

Faculty of Arts and Sciences
Mathematics Department

MATH 251

QUIZ II
FALL 2009-2010
Closed Book, 75 MINUTES

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	16	
2	13	
3	13	
4	8	
TOTAL	50	

1. Consider a function $f(x)$ given at 4 distinct data points by the following table:

\mathbf{i}	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$
0	1.0	0
1	1.5	1.76
2	2.0	3.01
3	3.0	4.77

(a) Use this table to create a lower triangular matrix whose entries are Neville's interpolating polynomials of all orders.
Note: Show the details of your calculations in the space left below

\mathbf{i}	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}=\mathbf{p}_{\mathbf{i}}(\mathbf{x})$	$\ldots \ldots \mathbf{p}_{\mathbf{i} \mathbf{i} \mathbf{i}+\mathbf{1}}(\mathbf{x}) \ldots \ldots \ldots$	$\ldots \ldots \mathbf{p}_{\mathbf{i}, \mathbf{i}+\mathbf{1}, \mathbf{i}+\mathbf{2}}(\mathbf{x}) \ldots \ldots$	$\ldots \mathbf{p}_{\mathbf{i}, \mathbf{i}+\mathbf{1}, \mathbf{i}+\mathbf{2}, \mathbf{i}+\mathbf{3}}(\mathbf{x}) \ldots$
0	1.0	0	\cdot	\cdot	\cdot
1	1.5	1.7	\cdot	\cdot	\cdot
2	2.0	3.0	\cdot	\cdot	\cdot
3	3.0	4.7	\cdot	\cdot	\cdot

(b) Approximate $f(1.25)$, using the most suitable Quadratic interpolation polynomial.
(c) Based on the EXISTENCE and UNIQUENESS properties of $p_{0123}(x)$, and using the LEAST number of additional parameters, find a polynomial that takes the values shown in the given table, and has at $x=4$ the value 5 .(Note that $p_{0123}(4)=5.5$)
2. Determine the Natural Quadratic Spline based on the first 3 nodes of the Table given in exercise 1.
3. MATLAB QUESTION : NAIVE GAUSS
4. The objective of this exercise is to set a procedure that finds the LUdecomposition of A^{T}, as the product of a lower unit triangular matrix L_{1}, and an upper triangular matrix V, based only on the LUdecomposition of the matrix A itself.
In this view, consider the following LU- decomposition of the matrix A obtained through the Naive Gaussian elimination procedure

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 4 & 1 \\
-2 & 4 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-2 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & -1
\end{array}\right]=L U
$$

(a) Determine the matrices D and U_{1} that factor the matrix U as the product of a diagonal matrix $D=\operatorname{Diag}(U)$ and a Unit Upper triangular matrix U_{1}, where:

$$
U=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
. & 0 & 0 \\
0 & . & 0 \\
0 & 0 & .
\end{array}\right]\left[\begin{array}{ccc}
1 & . & . \\
0 & 1 & . \\
0 & 0 & 1
\end{array}\right]=D U_{1}
$$

(b) Determine then, the lower triangular matrix M that factors A as $A=M U_{1}$.

$$
M=\left[\begin{array}{ccc}
\cdot & 0 & 0 \\
\cdot & \cdot & 0 \\
\cdot & \cdot & \cdot
\end{array}\right]
$$

Justify the results:
(c) Based on the results above, express A^{T} as the product $A^{T}=L_{1} V$ where L_{1} is a unit Lower triangular matrix, and V is an upper triangular matrix.
(Hint: $\left.(X Y)^{T}=Y^{T} X^{T}\right)$

$$
\begin{gathered}
L_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
. & 1 & 0 \\
\cdot & \cdot & 1
\end{array}\right] \\
V=\left[\begin{array}{lll}
. & \cdot & \cdot \\
0 & \cdot & \cdot \\
0 & 0 & .
\end{array}\right]
\end{gathered}
$$

Justify the results:
(d) Identify (DO NOT CALCULATE) the multipliers used at each reduction if the Naive Gauss elimination were applied on the matrix A^{T}.

- Multipliers of Reduction 1:
- Multipliers of Reduction 2:

