AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251 TEST 1 FALL 2009-2010 Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	13	
2	14	
3	11	
4	12	
TOTAL	50	

 Determine the decimal number x in F(10, 5, -60, +60), that has the following hexadecimal representation in the IEEE single precision system. (If needed, round to the closest and use nested polynomial evaluation.)

 $x = [1B 1A 1A 1B]_{16}$

2. To establish Newton's iterative scheme - **not involving division by the iterate**- that approximates the negative number

$$a = -\frac{1}{5^{1/3}}$$

Determine:

(a) The function to be used

(b) The graph of f

(c) The iterative formula of Newton's method

(d) The restrictions on the initial conditions, if any:

(e) Calculate $a = -\frac{1}{5^{1/3}}$ up to 2 decimal places. Express all your answers in F(10, 4, -20, +20), and round to the closest if neded.

3. The following Algorithm approximates the root r of a function f(x) using the SECANT method

Input f, a, b,TOL, kmax function[.....]=mySecant(.....) Find the first 2 approximations by the " Bisection rule"

k=2; RelErr = 1; while

Display : 'the best approximation to the root is r=......'

4. (a) - Solving the quadratic equation

$$x^2 - (2 \times 10^5)x - 10^{-4} = 0$$

in the normalized floating point system F(10, 5, -20, +20) will cause a problem if the standard equations for the roots of x_1 and x_2 are used. Investigate the example, **observe and discuss the difficulties**, and propose a remedy.

In F(10, 5, -20, +20)

 $\Delta =$

 $x_1 =$

 $x_2 =$

(b) - (i) -Find the IEEE Single precision binary bit string representation of the midpoint of the interval $(0, x_{min})$.

 $(x_d)_{midpoint} =$

Bit-string representation of $(x_d)_{midpoint}$ in IEEE single precision:

(ii) - If fl_p represents rounding to the closest, what is $fl_p(x_d)_{midpoint}$ in ${\cal F}_S$?

 $fl_p((x_d)_{midpoint}) =$