AMERICAN UNIVERSITY OF BEIRUT Mathematics Department-FAS

MATH 251

TEST 1
FALL 2009-2010
Closed Book, 75 mn

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	13	
2	14	
3	11	
4	12	
TOTAL	50	

1. Determine the decimal number x in $F(10,5,-60,+60)$, that has the following hexadecimal representation in the IEEE single precision system. (If needed, round to the closest and use nested polynomial evaluation.)

$$
x=[1 B 1 A 1 A 1 B]_{16}
$$

2. To establish Newton's iterative scheme - not involving division by the iterate- that approximates the negative number

$$
a=-\frac{1}{5^{1 / 3}}
$$

Determine:
(a) The function to be used
(b) The graph of f
(c) The iterative formula of Newton's method
(d) The restrictions on the initial conditions, if any:
(e) Calculate $a=-\frac{1}{5^{1 / 3}}$ up to 2 decimal places. Express all your answers in $F(10,4,-20,+20)$, and round to the closest if neded.
3. The following Algorithm approximates the root r of a function $f(x)$ using the SECANT method

Input f, a, b,TOL, kmax

Find the first 2 approximations by the "Bisection rule"

$\mathrm{k}=2 ; \operatorname{RelErr}=1 ;$
while \qquad

Display : 'the best approximation to the root is $\mathrm{r}=\ldots . . .$. '
4. (a) - Solving the quadratic equation

$$
x^{2}-\left(2 \times 10^{5}\right) x-10^{-4}=0
$$

in the normalized floating point system $F(10,5,-20,+20)$ will cause a problem if the standard equations for the roots of x_{1} and x_{2} are used. Investigate the example, observe and discuss the difficulties, and propose a remedy.

In $F(10,5,-20,+20)$
$\Delta=$

$$
\begin{aligned}
& x_{1}= \\
& x_{2}=
\end{aligned}
$$

(b) - (i) -Find the IEEE Single precsion binary bit string representation of the midpoint of the interval $\left(0, x_{\text {min }}\right)$.
$\left(x_{d}\right)_{\text {midpoint }}=$

Bit-string representation of $\left(x_{d}\right)_{\text {midpoint }}$ in IEEE single precision:
(ii) - If $f l_{p}$ represents rounding to the closest, what is $f l_{p}\left(x_{d}\right)_{\text {midpoint }}$ in F_{S} ?
$f l_{p}\left(\left(x_{d}\right)_{\text {midpoint }}\right)=$

