AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences
 Mathematics Department

MATH-CMPS 251
QUIZ I
FALL 2007-2008
Closed Book, One hour 15 minutes

SUBMIT THE QUESTION SHEET WITH BOOKLET (ONLY NON-PROGRAMMABLE AND NON-GRAPHIC CALCULATORS ARE ALLOWED)

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	10	
2	8	
3	8	
4	8	
5	16	
TOTAL	50	

1. (10 points) Answer the following:
(a) Let $x=7.477$ and $y=3.789$ be 2 floating points in $\mathbb{F}=\mathbb{F}(10,4,-2,+2)$. What is the relative Error in the computation of $x \oplus y$ in \mathbb{F} ?
(b) Let $x=0.3721448693$ and $y=0.3720214371$

What is the relative error in the computation of $\left(f l_{p}(x) \ominus f l_{p}(y)\right)$ in \mathbb{F} ?
2. (8 points) Answer the following:
(a) Let $x=[94 F 96 A 0]_{16}$. Is this a hexadecimal representation of some element in \mathbb{F}_{s} ? Justify your answer.
(b) In case $x \in \mathbb{F}_{s}$, determine the decimal number that has this hexadecimal representation in \mathbb{F}_{s}. Otherwise, modify x first, then find the required decimal number.
3. (8 points) Loss of significant figures may result in the computation of the following functions of the variable x for certain values of x. Specify these values then propose alternative functions that would remedy the loss of significant figures. (If necessary you may use Taylors series).
(a) $f(x)=x-\sqrt{x^{2}+1}$
(b) $g(x)=1-\cos (x / 2)$
4. (8 points) Consider the polynomial $p(x)=4+x^{2}+3 x^{4}+2 x^{8}-5 x^{16}$.
(a) (4 points)) Put $p(x)$ in nested form.
(b) (4 points) Find consequently the minimum number of floatingpoint operations to compute $p(x)$.
5. (16 points) Let $f(x)=\ln (1+x)-\frac{1}{x+1}$
(a) (7 points) Prove that the function $f(x)$ has a unique positive root r in the interval $(0,1)$:

- (3 points) By plotting both functions $\ln (1+x)$ and $\frac{1}{x+1}$
- (4 points) By studying the behaviour of $f(x)$ and $f^{\prime}(x)$ on $[0, \infty)$
(b) (3 points) Apply 2 iterations of the Bisection method
- First Iteration: $r_{1}=$
- Second Iteration: $r_{2}=$
(c) (3 points) Write Newton's method iteration formula and apply 1 iteration of the formula using r_{1} (found above) as initial choice.
(d) (3 points) Write the Secant method iteration formula and apply 1 iteration of the formula using r_{1} and r_{2} (found above) as initial choice.

