AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH-CMPS 251 QUIZ I FALL 2007-2008 Closed Book, One hour 15 minutes

SUBMIT THE QUESTION SHEET WITH BOOKLET (ONLY NON-PROGRAMMABLE AND NON-GRAPHIC CALCULATORS ARE ALLOWED)

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	10	
2	8	
3	8	
4	8	
5	16	
TOTAL	50	

- 1. (10 points) Answer the following:
 - (a) Let x = 7.477 and y = 3.789 be 2 floating points in $\mathbb{F} = \mathbb{F}(10, 4, -2, +2)$. What is the relative Error in the computation of $x \oplus y$ in \mathbb{F} ?

(b) Let x = 0.3721448693 and y = 0.3720214371What is the relative error in the computation of $(fl_p(x) \ominus fl_p(y))$ in \mathbb{F} ?

- 2. (8 points) Answer the following:
 - (a) Let $x = [94F96A0]_{16}$. Is this a hexadecimal representation of some element in \mathbb{F}_s ? Justify your answer.

(b) In case $x \in \mathbb{F}_s$, determine the decimal number that has this hexadecimal representation in \mathbb{F}_s . Otherwise, modify x first, then find the required decimal number. 3. (8 points) Loss of significant figures may result in the computation of the following functions of the variable x for certain values of x. Specify these values then propose alternative functions that would remedy the loss of significant figures. (If necessary you may use Taylors series).

(a)
$$f(x) = x - \sqrt{x^2 + 1}$$

(b) $g(x) = 1 - \cos(x/2)$

4. (8 points) Consider the polynomial p(x) = 4 + x² + 3x⁴ + 2x⁸ - 5x¹⁶.
(a) (4 points)) Put p(x) in nested form.

(b) (4 points) Find consequently the minimum number of floatingpoint operations to compute p(x).

- 5. (16 points) Let $f(x) = \ln(1+x) \frac{1}{x+1}$
 - (a) (7 points) Prove that the function f(x) has a unique positive root r in the interval (0, 1):
 - (3 points) By plotting both functions $\ln(1+x)$ and $\frac{1}{x+1}$

• (4 points) By studying the behaviour of f(x) and f'(x) on $[0,\infty)$

- (b) (3 points) Apply 2 iterations of the Bisection method
 - First Iteration: $r_1 =$

• Second Iteration: $r_2 =$

(c) (3 points) Write Newton's method iteration formula and apply 1 iteration of the formula using r_1 (found above) as initial choice.

(d) (3 points) Write the Secant method iteration formula and apply 1 iteration of the formula using r_1 and r_2 (found above) as initial choice.