# Chapter 11 Arenes and Aromaticity

#### **Examples of Aromatic Hydrocarbons**

Chem 211 B. R. Kaafarani

2

#### 11.2. The Structure of Benzene

- ➤ Kekulé (1866) proposed a cyclic structure for C<sub>6</sub>H<sub>6</sub> with alternating single and double bonds.
- ➤ Later, Kekulé revised his proposal by suggesting a rapid equilibrium between two equivalent structures.
- ➤ However, this proposal suggested isomers of the kind shown were possible. Yet, none were ever found.

**Chem 211** 

#### Structure of Benzene

➤ Structural studies of benzene **DO NOT** support the Kekulé formulation. Instead of alternating single and double bonds, all of the C—C bonds are the same



Benzene has the shape of a regular hexagon

### All C—C bond distances = 140 pm



➤ 140 pm is the average between the C—C single bond distance and the double bond distance in 1,3-butadiene.

### Resonance Picture of Bonding in Benzene

- Instead of Kekulé's suggestion of a rapid equilibrium between two structures.
- Express the structure of benzene as a resonance hybrid of the two Lewis structures. Electrons are not localized in alternating single and double bonds, but are delocalized over all six ring carbons.



Chem 211

#### Resonance Formulation of Benzene



Circle-in-a-ring notation stands for resonance description of benzene (hybrid of two Kekulé structures).

# 11.3. The Stability of Benzene

- ➤ Benzene is the best and most familiar example of a substance that possesses "special stability" or "aromaticity".
- Aromaticity is a level of stability that is substantially greater for a molecule than would be expected on the basis of any of the Lewis structures written for it.

# Thermochemical Measures of Stability

➤ Heat of hydrogenation: compare experimental value with "expected" value for hypothetical "cyclohexatriene".

$$+ 3H_2$$
  $\xrightarrow{Pt}$ 

$$\Delta H^{\circ} = -208 \text{ kJ}$$

- Observed heat of hydrogenation is 152 kJ/mol less than "expected".
- Benzene is 152 kJ/mol more stable than expected.
- ➤ 152 kJ/mol is the resonance energy of benzene.



### Cyclic conjugation versus noncyclic conjugation



Heat of hydrogenation = 208 kJ/mol

Heat of hydrogenation = 337 kJ/mol

# Resonance Energy of Benzene

- Compared to localized 1,3,5-cyclohexatriene 152 kJ/mol
- Compared to 1,3,5-hexatriene 129 kJ/mol
- Exact value of resonance energy of benzene depends on what it is compared to, but regardless of model, benzene is more stable than expected by a substantial amount.

# 11.4. An Orbital Hybridization View of Bonding in Benzene

Planar ring of 6 sp<sup>2</sup> hybridized carbons





- Each carbon contributes a *p* orbital.
- ightharpoonup Six p orbitals overlap to give cyclic  $\pi$  system; six  $\pi$  electrons delocalized throughout  $\pi$  system.
- High electron density above and below plane of ring.

#### 11.5. The $\pi$ Molecular Orbitals of Benzene



6 p AOs combine to give 6  $\pi$  MOs 3 MOs are bonding; 3 are antibonding

Chem 211 B. R. Kaafarani 14

### Benzene MOs



All bonding MOs are filled No electrons in antibonding orbitals

#### **Benzene MOs**



# 11.6 Substituted Derivatives of Benzene and Their Nomenclature

#### **General Points**

1) Benzene is considered as the parent and comes last in the name.





Bromobenzene

tert-Butylbenzene Nitrobenzene

#### **General Points**

- 1) Benzene is considered as the parent and comes last in the name.
- 2) List substituents in alphabetical order.
- 3) Number ring in direction that gives lowest locant at first point of difference.

# Example

#### 2-Bromo-1-chloro-4-fluorobenzene

## Ortho, Meta, and Para

# Alternative locants for disubstituted derivatives of benzene







$$1,2 = ortho$$
 (abbreviated  $o$ -)

$$1,3 = meta$$
 (abbreviated  $m$ -)

$$1,4 = para$$
 (abbreviated  $p$ -)

o-Xylene

# Examples

o-Ethylnitrobenzene (1-Ethyl-2-nitrobenzene) (1,3-Dichlorobenzene)

m-Dichlorobenzene

# **Benzene Derivatives**

| TABLE 11.1 Names of Some Frequently Encountered Derivatives of Benzene |                             |              |
|------------------------------------------------------------------------|-----------------------------|--------------|
| Structure                                                              | Systematic name             | Common name* |
| О<br>Н<br>СН                                                           | Benzenecarbaldehyde         | Benzaldehyde |
| СОН                                                                    | Benzenecarboxylic acid      | Benzoic acid |
| —CH=0                                                                  | H <sub>2</sub> Vinylbenzene | Styrene      |
| О<br>— ССН <sub>3</sub>                                                | Methyl phenyl ketone        | Acetophenone |
| —ОН                                                                    | Benzenol                    | Phenol       |
| ——————————————————————————————————————                                 | Methoxybenzene              | Anisole      |
| NH <sub>2</sub>                                                        | Benzenamine                 | Aniline      |

<sup>\*</sup>These common names are acceptable in IUPAC nomenclature and are the names that will be used in this text.

# Benzene Derivative names can be used as parent



**Anisole** 



p-Nitroanisoleor4-Nitroanisole

### Easily confused names

phenyl phenol benzyl

OH

CH<sub>2</sub>—

a group

a compound

a group

# 11.7. Polycyclic Aromatic Hydrocarbons

### Naphthalene

Resonance energy = 255 kJ/mol



Most stable Lewis structure; both rings correspond to Kekulé benzene.

### Anthracene and Phenanthrene



Anthracene



Phenanthrene

Resonance energy:

347 kJ/mol

381 kJ/mol

# 11.8. Physical Properties of Arenes

- Resemble other hydrocarbons:
  - Nonpolar.
  - Insoluble in water.
  - Less dense than water.

#### 11.9. Reactions of Arenes: A Preview

- 1. Some reactions involve the ring.
- 2. In other reactions the ring is a substituent.
- A. Reactions involving the ring
  - a) Reduction

Catalytic hydrogenation (Section 11.3). Birch reduction (Section 11.10).

- b) Electrophilic aromatic substitution (Chapter 12).
- c) Nucleophilic aromatic substitution (Chapter 12).
- B. The ring as a substituent (Sections 11.11-11.16).

# Reduction of Benzene Rings

Birch reduction (Section 11.10)

$$H \longrightarrow H$$

Chem 211 B. R. Kaafarani

#### 11.10. Birch Reduction of Benzene

- Product is non-conjugated diene.
- Reaction stops here. There is no further reduction.
- Reaction is not hydrogenation. H<sub>2</sub> is NOT involved in any way.

#### Step 1: Electron transfer from sodium

#### Step 2: Proton transfer from methanol

Chem 211 B. R. Kaafarani 33

Step 3: Electron transfer from sodium

#### Step 4: Proton transfer from methanol

# Birch Reduction of an Alkylbenzene

➤ If an alkyl group is present on the ring, it ends up as a substituent on the double bond.

# 11.11. Free-Radical Halogenation of Alkylbenzenes

#### The Benzene Ring as a Substituent

Allylic radical



Benzylic radical

Benzylic carbon is analogous to allylic carbon.

#### Resonance in Benzyl Radical

➤ Unpaired electron is delocalized between benzylic carbon and the ring carbons that are *ortho* and *para* to it.

# Spin Density in Benzyl Radical (Figure 11.9, p 444)





➤ Unpaired electron is delocalized between benzylic carbon and the ring carbons that are *ortho* and *para* to it.

#### Free-Radical Chlorination of Toluene

> Industrial process.

Toluene

> Highly regioselective for benzylic position.

$$\begin{array}{c|c} & Cl_2 \\ \hline \\ & CH_3 \end{array} \begin{array}{c} Cl_2 \\ \hline \\ & cH_2CI \end{array}$$

Chem 211 B. R. Kaafarani 40

Benzyl chloride

#### Free-Radical Chlorination of Toluene

➤ Similarly, dichlorination and trichlorination are selective for the benzylic carbon. Further chlorination gives:

$$\sim$$
 CHCl<sub>2</sub>  $\sim$  CCl<sub>3</sub>

(Dichloromethyl)benzene

(Trichloromethyl)benzene

#### **Benzylic Bromination**

➤ Is used in the laboratory to introduce a halogen at the benzylic position.

$$\begin{array}{c|c} CH_3 & CH_2Br \\ \hline \\ + Br_2 & \hline \\ & light \\ \hline \\ NO_2 & NO_2 \\ \end{array} + HBr$$

*p*-Nitrotoluene

p-Nitrobenzyl bromide (71%)

#### N-Bromosuccinimide (NBS)

> NBS is a convenient reagent for benzylic bromination.

$$\begin{array}{c|c}
O & CH_2CH_3 & O & CHCH_3 \\
\hline
NBr + & \overline{\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CCI_4}\phantom{CC$$

## 11.12. Oxidation of Alkylbenzenes

#### Site of Oxidation is Benzylic Carbon



B. R. Kaafarani

44

## Example

CH<sub>3</sub>

$$\begin{array}{c}
 & \text{Na}_2\text{Cr}_2\text{O}_7 \\
 & \text{H}_2\text{SO}_4
\end{array}$$

$$\begin{array}{c}
 & \text{H}_2\text{O} \\
 & \text{heat}
\end{array}$$

$$\begin{array}{c}
 & p\text{-Nitrobenzoic} \\
 & \text{acid (82-86\%)}
\end{array}$$

# Example

$$\begin{array}{c|c}
CH(CH_3)_2 & COH \\
\hline
Na_2Cr_2O_7 \\
H_2SO_4 \\
\hline
H_2O \\
heat
\end{array}$$
COH
COH
COH
(45%)

#### Nucleophilic Substitution in Benzylic Halides

$$O_2N$$
 —  $CH_2CI$  —  $O$  —  $Mechanism is  $S_N2$  —  $NaOCCH_3$  —  $Sodium\ Acetate$  —  $O_2N$  —  $CH_2OCCH_3$  —  $(78-82\%)$$ 

Chem 211 B. R. Kaafarani 47

## What about $S_N 1$ ?

Relative solvolysis rates in aqueous acetone

$$\begin{array}{c} CH_3 \\ C - CI \\ CH_3 \\ CH_3 \end{array}$$

$$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$$

$$\begin{array}{c} CH_3 \\ CH_3 \\ \end{array}$$

Formed Tertiary benzylic carbocation is formed more rapidly than tertiary carbocation; therefore, more stable.

# What about $S_N 1$ ?

#### Relative rates of formation:

$$CH_3$$
 $C+$ 
 $CH_3$ 

more stable

less stable

## Resonance in Benzyl Cation

➤ Positive charge is delocalized between benzylic carbon and the ring carbons that are *ortho* and *para* to it.

# Solvolysis

$$CH_3$$
 $CH_3$ 
 $CH_3$ 

Chem 211 B. R. Kaafarani 51

# 11.15 Preparation of Alkenylbenzenes

Dehydrogenation

**Dehydration** 

Dehydrohalogenation

## Dehydrogenation

Industrial preparation of styrene.

# Acid-Catalyzed Dehydration of Benzylic Alcohols

## Dehydrohalogenation

$$H_3C$$
  $\longrightarrow$   $CH_2CHCH_3$   $Br$   $NaOCH_2CH_3$  ethanol,  $50^{\circ}C$   $H_3C$   $\longrightarrow$   $CH$   $=$   $CHCH_3$  (99%)

# 11.16 Addition Reactions of Alkenylbenzenes

Hydrogenation

Halogenation

Addition of hydrogen halides

# Hydrogenation

$$CH_3$$
 $C=CHCH_3$ 
 $H_2$ 
 $Pt$ 
 $Br$ 
 $CH_3$ 
 $CHCH_2CH_3$ 
 $CHCH_3$ 
 $CHCH_2CH_3$ 
 $CHCH_3$ 
 $CHCH_2CH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 
 $CHCH_3$ 

# Halogenation

$$CH=CH_2$$
 $Br_2$ 
 $CH=CH_2$ 
 $Br$ 
 $Br$ 
 $Br$ 
 $Br$ 
 $Br$ 
 $Br$ 
 $Br$ 

# Addition of Hydrogen Halides



via benzylic carbocation

#### Free-Radical Addition of HBr

$$\begin{array}{c|c} & & HBr \\ \hline & & \\ \hline & \\ \hline & &$$

via benzylic radical

#### 11.17. Polymerization of Styrene

polystyrene



# 11.18. Cyclobutadiene and Cyclooctatetraene Heats of Hydrogenation

to give cyclohexane (kJ/mol)



➤ Heat of hydrogenation of benzene is 152 kJ/mol less than 3 times heat of hydrogenation of cyclohexene.

## Heats of Hydrogenation

to give cyclooctane (kJ/mol)



➤ Heat of hydrogenation of cyclooctatetraene is more than 4 times heat of hydrogenation of cyclooctene.

## Structure of Cyclooctatetraene

Cyclooctatetraene is not planar.

Has alternating long (146 pm) and short (133 pm) bonds.



## Structure of Cyclobutadiene

➤ MO calculations give alternating short and long bonds for cyclobutadiene.



## Stability of Cyclobutadiene

- ➤ Cyclobutadiene is observed to be highly reactive, and too unstable to be isolated and stored in the customary way.
- ➤ Not only is cyclobutadiene not aromatic, it is antiaromatic.
- ➤ An antiaromatic substance is one that is destabilized by cyclic conjugation.

## Requirements for Aromaticity

Cyclic conjugation is necessary, but not sufficient.



not aromatic

Antiaromatic when square



aromatic



not aromatic

Antiaromatic when planar

#### Conclusion

There must be some factor in addition to cyclic conjugation that determines whether a molecule is aromatic or not.

#### 11.19. Hückel's Rule: Annulenes

The additional factor that influences aromaticity is the number of  $\pi$ - electrons.

#### Hückel's Rule

 $\triangleright$  Among planar, monocyclic, completely conjugated polyenes, only those with 4n+2  $\pi$  electrons possess special stability (are aromatic):

| <u>n</u> | 4 <i>n</i> +2 |          |
|----------|---------------|----------|
| 0        | 2             |          |
| 1        | 6             | Benzene! |
| 2        | 10            |          |
| 3        | 14            |          |
| 4        | 18            |          |

#### Hückel's Rule

- ➤ Hückel restricted his analysis to planar, completely conjugated, monocyclic polyenes.
- $\triangleright$  He found that the  $\pi$  molecular orbitals of these compounds had a distinctive pattern.
- $\blacktriangleright$  One  $\pi$  orbital was lowest in energy, another was highest in energy, and the others were arranged in pairs between the highest and the lowest.

#### Hückel's Rule

- Frost's circle is a mnemonic that allows us to draw a diagram showing the relative energies of the  $\pi$  orbitals of a cyclic conjugated system.
- 1) Draw a circle.
- 2) Inscribe a regular polygon inside the circle so that one of its corners is at the bottom.
- 3) Every point where a corner of the polygon touches the circle corresponds to a  $\pi$  electron energy level.
- 4) The middle of the circle separates bonding and antibonding orbitals.

### Frost's Circle



 $\pi$  MOs of Benzene

#### $\pi$ -MO's of Benzene



**Bonding** 

6 p orbitals give 6  $\pi$  orbitals.

3 orbitals are bonding; 3 are antibonding.

#### $\pi$ -MO's of Benzene



6  $\pi$  electrons fill all of the bonding orbitals. all  $\pi$  antibonding orbitals are empty.



Chem 211 B. R. Kaafarani 76

# π-Electron Requirement for Aromaticity

4  $\pi$  electrons 6  $\pi$  electrons 8  $\pi$  electrons not aromatic aromatic

# Completely Conjugated Polyenes

 $6 \pi$  electrons; completely conjugated



aromatic

6  $\pi$  electrons; not completely conjugated



#### 11.20. Annulenes

Annulenes are planar, monocyclic, completely conjugated polyenes. That is, they are the kind of hydrocarbons treated by Hückel's rule.

## [10] Annulenes



- ➤ Predicted to be aromatic by Hückel's rule, but too much angle strain when planar and all double bonds are *cis*.
- ➤ 10-sided regular polygon has angles of 144°.

## [10] Annulenes



Incorporating two *trans* double bonds into the ring relieves angle strain but introduces van der Waals strain into the structure and causes the ring to be distorted from planarity.

## [14] Annulenes



- $\triangleright$  14  $\pi$  electrons satisfies Hückel's rule.
- > van der Waals strain between hydrogens inside the ring.

## [16] Annulenes



- $\triangleright$  16  $\pi$  electrons does not satisfy Hückel's rule.
- ➤ Alternating short (134 pm) and long (146 pm) bonds not aromatic.

## [18] Annulenes

- $\triangleright$  18  $\pi$  electrons satisfies Hückel's rule.
- Resonance energy = 418 kJ/mol.
- ➤ Bond distances range between 137-143 pm.

# 11.21. Aromatic Ions Cycloheptatrienyl Cation

- $\triangleright$  6  $\pi$  electrons delocalized over 7 carbons.
- Positive charge dispersed over 7 carbons.
- Very stable carbocation also called tropylium cation.

Chem 211 B. R. Kaafarani 85

# Cycloheptatrienyl Cation



- > Tropylium cation is so stable that tropylium bromide is ionic rather than covalent.
- ➤ mp 203 °C; soluble in water; insoluble in diethyl ether.

# Cyclopentadienide Anion



6  $\pi$  electrons delocalized over 5 carbons.

Negative charge dispersed over 5 carbons stabilized anion.



# Acidity of Cyclopentadiene



$$pK_a = 16$$

$$K_a = 10^{-16}$$

- > Cyclopentadiene is unusually acidic for a hydrocarbon.
- > Increased acidity is due to stability of cyclopentadienide anion.

### Electron Delocalization in Cyclopentadienide Anion

Chem 211 B. R. Kaafarani 89

# Compare Acidity of Cyclopentadiene & Cycloheptatriene



$$pK_a = 16$$

$$pK_a = 16$$
  
 $K_a = 10^{-16}$ 



$$pK_a = 36$$

$$pK_a = 36$$
  
 $K_a = 10^{-36}$ 

# Compare Acidity of Cyclopentadiene & Cycloheptatriene

Aromatic anion  $6 \pi$  electrons

Anion not aromatic  $8 \pi \text{ electrons}$ 

# **Cyclopropenyl Cation**





$$n = 0$$

$$4n + 2 = 2 \pi \text{ electrons}$$

# Cyclooctatetraene Dianion

H H also written as H H H H 
$$n=2$$

 $4n + 2 = 10 \pi$  electrons

## 11.22. Heterocyclic Aromatic Compounds

## Examples









**Pyridine** 

**Pyrrole** 

**Furan** 

Thiophene

# 11.23. Heterocyclic Aromatic Compounds and Hückel's Rule

# **Pryridine**



- $\triangleright$  6  $\pi$  electrons in ring.
- ightharpoonup Lone pair on nitrogen is in an  $sp^2$  hybridized orbital; not part of  $\pi$ -system of ring.

# **Pyrrole**



- Lone pair on nitrogen must be part of ring
- $\pi$  system if ring is to have 6  $\pi$ -electrons.
- $\triangleright$  Lone pair must be in a p orbital in order to overlap with ring  $\pi$ -system.

#### **Furan**



Two lone pairs on oxygen one pair is in a p orbital and is part of ring  $\pi$ -system; other is in an  $sp^2$  hybridized orbital and is not part of ring  $\pi$ -system.