

6. Structural Analysis

Main Goal:

To show how to determine the forces in the members of a truss using the method of joints and the method of section.

Contents:

- 6.1 Simple Trusses
- 6.2 The Method of Joints
- 6.3 Zero Force Members
- 6.4 The Method of Sections

Chapter 6 -Structural Analysis

6.1 Simple Trusses

- A truss is a structure composed of slender members joined together at their end points.
- The members are usually wooden struts or metal bars.
- Planar trusses lie in a single plane and are often used to support roofs and bridges.
- The roof load is transmitted to the truss at the joints by means of a series of *purlins*.

6.1 Simple Trusses

Assumption for Design:

- To design both the <u>members</u> and the <u>connections</u> of a truss, it is necessary first to determine the force developed in each member when the truss is subjected to a given loading.
- Each truss member is considered as a two-force member so that the forces at the ends of the member must be directed along the axis of the member.

All loadings are applied at <u>the joints</u>.

The members are joined together by <u>smooth pins</u>.

Chapter 6 -Structural Analysis 5

6.1 Simple Trusses

Assumption for Design:

• The joint connections are usually formed by bolting or welding the ends of the members to a common plate, called a gusset plate, or by simply passing a large bolt or pin through each of the members.

6.1 Simple Trusses

Assumption for Design:

- The force acting at each end of the member is directed along the axis of the member.
- If this tends to elongate the member, it is a *tensile force* (T).
- If it tends to shorten the member, it is a *compressive force* (C).

Chapter 6 -Structural Analysis 7

6.1 Simple Trusses

- To prevent collapse, the form of a truss must be rigid. The simplest form which is rigid or stable is a triangle.
- Consequently, a simple truss is constructed by starting with a basic triangular element.
- Additional elements consisting of two members and a joint are added to the triangular element to form a simple truss.

6.2 The Method of Joints

- The method of joint is based on the fact that if the entire truss is in equilibrium, then <u>each of its joints</u> is also in equilibrium.
- Therefore, if the free-body diagram of each joint is drawn, the <u>force equilibrium equations</u> can then be used to obtain the <u>member forces acting on each joint</u>.
- Since the members of a plane truss are straight two-force members lying in a single plane, each joint is subjected to a force system that is *coplanar* and *concurrent*.
- As a result, $\sum F_x = 0$ and $\sum F_y = 0$ need to be satisfied for equilibrium.

Chapter 6 -Structural Analysis 9

6.2 The Method of Joints

For example consider the pin at joint B of the truss:

- Three forces act on the pin: the 500 N force and the forces exerted by members *BA* and *BC*.
- \mathbf{F}_{BA} is <u>pulling</u> on the <u>pin</u>, which means that member *BA* is in <u>tension</u>.
- \mathbf{F}_{BC} is <u>pushing</u> on the <u>pin</u>, and consequently member *BC* is in <u>compression</u>.

6.2 The Method of Joints

- When using the method of joints, always start at a joint having at least one known force and at most two unknown forces.
- $\sum F_x = 0$ and $\sum F_y = 0$ can be solved to determine the two unknowns.
- The correct sense of an unknown member force can be determined using one of two possible methods:
- The correct sense of direction of an unknown member force can be determined by inspection.
- Assume the unknown member forces acting on the joint's free-body diagram to be in tension.

П

Example 1

• Determine the force in each member of the truss and indicate whether the members are in tension or compression.

• Since we should have no more than two unknown forces at the joint and at least one known force acting there, we will begin our analysis at joint *B*.

Joint B:

- Applying the equations of equilibrium, we have
 Σ F_x = 0 500N F_{BC} sin 45° = 0 F_{BC} = 707.1N (C) Σ F_y = 0 F_{BC} cos 45° F_{BA} = 0 F_{BC} = 500N (T)
 Since the force in member PC has been calculated we
 - Since the force in member *BC* has been calculated, we can proceed to analyze joint *C*

Solution 1
Joint C:

$$\int C_{F_x} = 0 \qquad -F_{c_x} + 707.1 \operatorname{cs} 45^\circ \operatorname{N} = 0 \qquad F_{c_x} = 500 \operatorname{N} (\operatorname{T})$$

$$\sum F_y = 0 \qquad -F_{c_x} - 707.1 \operatorname{sin} 45^\circ \operatorname{N} = 0 \qquad C_y = 500 \operatorname{N} (\operatorname{T})$$

Note: The results of the analysis are summarized below, which shows the free-body diagram for each joint and member:

Example 2

• Determine the force in each member of the truss and indicate whether the members are in tension or compression.

• The analysis <u>can now start</u> at either joint *A* or *C*:

Joint A: \mathbf{F}_{AB} is assumed to be compressive and \mathbf{F}_{AD} is tensile

$$\Sigma F_y = 0$$
 $-F_{DC} - \frac{4}{5}(-250N) = 0$ $F_{DC} = 200N$ (C)

Note: The analysis is summarized below, which shows the free-body diagram for each joint and member:

6.3 Zero-Force Members

- The *zero-force* members of a truss can generally be found by inspection of each of the joints.
- For example, consider the truss below.
- At <u>Joint A</u>, it is seen that members AB and AF are zeroforce members:

6.3 Zero-Force Members

• At <u>Joint D</u>, it is seen that members *DC* and *DE* are zero-force members.

• From these observations, we can conclude that if only <u>two members</u> form a truss joint and no external load or support reaction is applied to the joint, the two members must be <u>zero-force members</u>.

Chapter 6 -Structural Analysis

6.3 **Zero-Force Members**

• <u>At Joint D</u>, it is seen that DA is zero-force member.

• In general then, if three members form a truss joint for which two of the members are collinear, the third member is a zero-force member provided no external force or support reaction is applied to the joint.

6.4 The Method of Sections

- When we need to find the force in only a few members of a truss we can analyze the truss using the *method of sections*.
- This method is based on the principle that if the truss is in equilibrium then any segment of the truss is also in equilibrium.
- If the forces within the members are to be determined, then an imaginary section can be used to cut each member into two parts.

6.4 **The Method of Sections**

- For example, consider the truss below:
- If the forces in members BC, GC, and GF are to be determined, then section *a-a* would be appropriate.

D,

E.

6.4 The Method of Sections

- The Three unknown member forces \mathbf{F}_{BC} , \mathbf{F}_{GC} , and \mathbf{F}_{GF} can be obtained by applying the three equilibrium equations of the segments.
- The three support reactions D_x , D_y and E_x can be obtained by considering a free-body diagram of the entire truss.

Example 2

• Determine the force in members GE, GC, and BC of the truss. Indicate whether the members are in tension or compression.

- Section *a-a* has been chosen since it cuts through the three members whose forces are to be determined.
- It is first necessary to determine the external reactions at *A* and *D*.

Solution 2

Free-Body Diagram: For the analysis the free-body diagram of the left portion of the sectioned truss will be used.

Equations of Equilibrium:

$$\sum M_{G} = 0 \quad -300N(4m) - 400N(3m) + F_{BC}(3m) = 0$$

$$F_{BC} = 800N \quad (T)$$

$$\sum M_{C} = 0 \quad -300N(8m) + F_{GE}(3m) = 0 \quad F_{GE} = 800N \quad (C)$$

$$\Sigma F_y = 0$$
 300N $-\frac{3}{5}F_{GC} = 0$ $F_{GC} = 500$ N (T)

Chapter 6 -Structural Analysis