QUIZ 2
 Fall 2011-12
 (December 20, 2011)

 CIVE210 - STATICS

 CIVE210 - STATICS
 CLOSED BOOK, 2 HOURS

Name:

ID\#:

NOTES

- 5 PROBLEMS- 13 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- THREE EXTRA SHEETS IS PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I: /10
Problem II: /15
Problem III: /30
Problem IV: 130
Problem V: /15
TOTAL: /100

Problem I: (10 points)

Figure I

Tick Boxes to check that you solved all questions

Discuss very briefly the EXTERNAL stability and determinacy of each of the structural systems shown in Figure I (maximum of 2 lines each). (10 points)

Calculations and/or Diagrams:
\qquad

Problem II: (15 points)

Figure II shows a section of a building with 3 floors. Only the balcony section is shown for simplicity. There are 6 forces acting on the building as shown. If the building is in equilibrium, determine the reactions at foundation level (Fixity A). (15 points)

Calculations and/or Diagrams:

\qquad

Problem III: (30 points)

Figure III

The structural system shown in Figure III is stable and statically determinate.
Let $w=500 \mathrm{~N} / \mathrm{m}, \mathrm{P}=1,000 \mathrm{~N}$, and $\mathrm{M}_{\mathrm{C}}=2,000 \mathrm{Nm}$.
1- Find a single resultant force (magnitude and direction) that is equivalent to the loads applied. (15 points)
2- Determine the location of this force on AC. (8 points)
3- Deduce the reactions at A and D. (7 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem IV: (30 points)

Figure IV

The plane truss shown in Figure IV is stable and statically determinate externally and internally.

1- Confirm the determinacy. (3 points)
2- Let $\mathrm{P}=0$.
Use the method of sections to compute the internal axial forces in members DE, EL, and LK, for the 8 kN load shown, and determine whether these members are in tension or compression. (15 points)
Deduce the forces in members DL and DC using one appropriate joint. (5 points)
3- Calculate the maximum horizontal force P that can be applied at joint I to the right (in addition to the existing 8 kN vertical load) so that member DE does not fail. Assume that the maximum load in tension that the truss members can take is 26 kN , while the maximum compression force is 38 kN . (7 points)

Calculations and/or Diagrams:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem V: (15 points)

(a)

(c)

(b)

(d)

Figure V

The fixed-end cantilever beams shown in Figure V are loaded with different types of distributed loads in (a), (b), (c), and (d).

1- If the equivalent load on each of these beams is the same and equal to P, determine the value of w for each the cases and write it on the figures above. (8 points)
2- Knowing therefore that the vertical reactions at the fixed ends are equal to P upward in all beams, estimate, without calculations, which beam has the largest (counterclockwise) moment reaction to smallest; write them down in the order as below and explain the reason of your choice VERY briefly in 2-3 lines maximum. (7 points)

$$
M()>M()>M()>M()
$$

Calculations and/or Diagrams:
\qquad

EXTRA SHEET 1: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:
\qquad

EXTRA SHEET 2: Continued from page

Name:

 ID\#:Calculations and/or Diagrams:
\qquad

EXTRA SHEET 3: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:
\qquad

