<u>QUIZ 1</u>

Fall 2012-13 (November 5, 2012) CIVE210 – STATICS CLOSED BOOK, 1 HR 30 MN

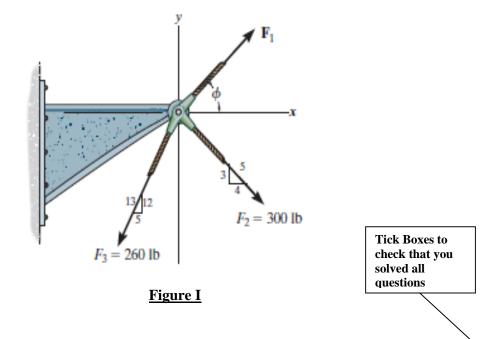
Name:	 <u>ID#:</u>	
<u>NOTES</u>		

- 4 PROBLEMS– 13 PAGES.
- ALL YOUR <u>ANSWERS</u> SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- TWO EXTRA SHEETS ARE PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE <u>MUCH LESS</u> THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- <u>CHECK BOXES</u> ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

<u>MY COMMENT(S)</u>

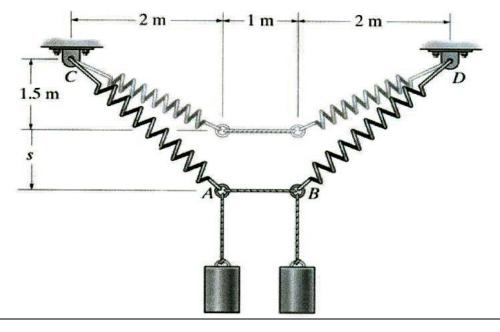

YOUR GRADE

Problem I:	/15
Problem II:	/30
Problem III:	/25
Problem IV:	/30
Bonus/Extras – Organization, Neatness, Special,:	

<u>TOTAL:</u> /100

Ĩ

Problem I: (15 points)

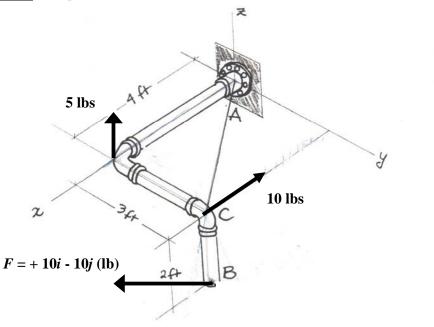


Referring to Figure I, if the magnitude of the resultant force acting on the bracket is 400 lb directed along the positive x axis, determine the magnitude of $\mathbf{F_1}$ and its direction ϕ . (15 points)

 -
 -
-
 -

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Problem II: (30 points)

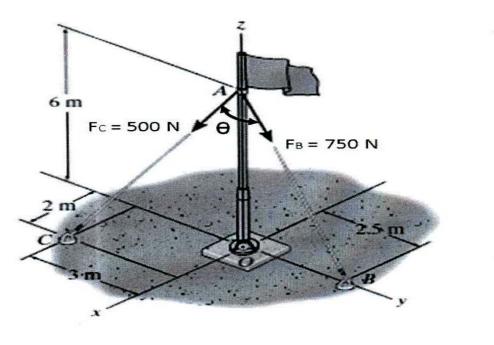

Figure II

- 1- Referring to Figure II, the identical cylinders weighing 20 N each cause a sag of s = 0.5m in the system when suspended from the rings at *A* and *B*. Determine the stiffness *k* of the identical springs. Note that s = 0 when the cylinders are removed. (15 points)
- 2- Using the stiffness k obtained earlier, if the cylinder weights are now 40 N each, compute the new sag s. Compare with s = 0.5m and very briefly comment (1 or 2 lines). (15 points)

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Problem III: (25 points)

Figure III


The rigid pipe system is subjected to the forces shown in Figure III.

- 1. Use a cross-product approach, compute the moment from the three forces at the support A in Cartesian vector form. (12 points).
- 2. Re-compute the three components Mx, My, and Mz at A due to the three forces using a simple scalar approach, and compare with question 1. (6 points)
- 3. Determine the component of this moment about an axis extending between points A and C. Express the results as Cartesian vectors. (7 *points*)

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Calculations and/or Diagrams (cont'd): _____ _____ -----_____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Problem IV: (30 points)

Figure IV

The two forces F_C and F_B are acting on the pole at point A as shown in <u>Figure IV</u>.

- 1. Determine the projection of the resultant force F_R of F_C and F_B acting along CB and perpendicular to it. Write the results in vector Cartesian form. (20 points)
- 2. Determine the angle θ between the two forces. (10 points)

Calculations and/or Diagrams (cont'd): _____ _____ -----_____ _____ _____ _____ _____ _____ _____

Calculations and/or Diagrams (cont'd): _____ _____ -----_____ _____ _____ _____ _____ _____ _____ _____ _____

EXTRA SHEET 1: Continued from page		
Name:	<u>ID#:</u>	
Calculations and/or Diagrams:		

Name:	<u>ID#:</u>
Calculations and/or Diagrams:	