QUIZ 1

Fall 2012-13
(November 5, 2012)

CIVE210 - STATICS CLOSED BOOK, 1 HR 30 MN

Name:

ID\#: \qquad

NOTES

- 4 PROBLEMS- 13 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- TWO EXTRA SHEETS ARE PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I:	$---/ 15$
Problem II:	$---/ 30$
Problem III:	$---/ 25$
Problem IV:	$---/ 30$
Bonus/Extras - Organization, Neatness, Special, ...:	---

TOTAL:

Problem I: (15 points)

Figure I

Referring to Figure I, if the magnitude of the resultant force acting on the bracket is 400 lb directed along the positive x axis, determine the magnitude of $\mathbf{F}_{\mathbf{1}}$ and its direction ϕ. (15 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem II: (30 points)

Figure II
1- Referring to Figure II, the identical cylinders weighing 20 N each cause a sag of $s=0.5 \mathrm{~m}$ in the system when suspended from the rings at A and B. Determine the stiffness \boldsymbol{k} of the identical springs. Note that $\boldsymbol{s}=0$ when the cylinders are removed. (15 points)

2- Using the stiffness \boldsymbol{k} obtained earlier, if the cylinder weights are now 40 N each, compute the new sag \boldsymbol{s}. Compare with $\boldsymbol{s}=0.5 \mathrm{~m}$ and very briefly comment (1 or 2 lines). (15 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem III: (25 points)

Figure III

The rigid pipe system is subjected to the forces shown in Figure III.

1. Use a cross-product approach, compute the moment from the three forces at the support A in Cartesian vector form. (12 points).
2. Re-compute the three components Mx, My, and Mz at A due to the three forces using a simple scalar approach, and compare with question 1. (6 points)
3. Determine the component of this moment about an axis extending between points A and C . Express the results as Cartesian vectors. (7 points)

Calculations and/or Diagrams:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem IV: (30 points)

Figure IV

The two forces F_{C} and F_{B} are acting on the pole at point A as shown in Figure IV.

1. Determine the projection of the resultant force F_{R} of F_{C} and F_{B} acting along $C B$ and perpendicular to it. Write the results in vector Cartesian form. (20 points)
2. Determine the angle θ between the two forces. (10 points)

Calculations and/or Diagrams:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

EXTRA SHEET 1: Continued from page

\qquad
ID\#:

Calculations and/or Diagrams:

EXTRA SHEET 2: Continued from page

\qquad
ID\#:

Calculations and/or Diagrams:

