PHYSICS 211

Final EXAM, Fall 2011-2012
TIME: 120 minutes

January 23, 2012

DO NOT OPEN THIS EXAM BEFORE YOU ARE TOLD TO BEGIN

The usage of programmable calculators is strictly forbidden

NAME
ID Number \qquad

Useful information
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$
$q=1.6 \times 10^{-19} \mathrm{C}$
$m_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$k_{\mathrm{e}}=8.9875 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Grading

Part I (20)	
Part II (20)	
Part III (30)	
Part IV (30)	
Total	

\qquadCheck if solution is continued on the back.

Part I: Gauss's Law (20)
Consider a long cylinder with radius R and a length l that is very large when compared to R so as to neglect the cylinder's end edge effects. This long cylinder has a volumetric charge density ρ.
(a) (7) Show that the electric field inside the cylinder at a distance r from its axis has the expression $E=\left(\rho / 2 \varepsilon_{0}\right) r$.
To determine He cedric field, we use Gama's leno $\phi_{B}=\int_{G . S .} \vec{E} \cdot \vec{A}=\frac{Q_{i n}}{2_{0}}$; The Gaussian nuance (G.S.)

$$
\phi_{E}=\phi_{1}+\phi_{2}+\phi_{3} \text { or } \phi_{1}=\phi_{3}=0 \text { because } \vec{E} 上 \vec{A}
$$

$$
\phi_{2}=E\left(8 \pi r l^{\prime}\right)=\frac{Q_{i n}}{\varepsilon_{0}}=\cos \rho_{2} \frac{Q}{V}=\frac{Q_{i n}}{V_{G \cdot 5}} \Rightarrow Q_{i n}=Q \cdot \frac{\cdot n R^{2} l^{\prime}}{5 R^{2} l^{2}}
$$

$$
\Rightarrow E=\frac{\rho}{2 \varepsilon_{0}} r
$$

(b) (8) Show that the electric field outside the cylinder at a distance r from its axis has the expression $E=2 \pi k_{\mathrm{e}} \rho R^{2} / r$
Ire Camion surface is now esth $2>R$, it is a cylinder

$$
\begin{aligned}
& \phi_{e}=\phi_{i}+\phi_{2}+\phi_{3}=\varepsilon\left(2 \pi r l^{\prime}\right)=\frac{\rho}{\varepsilon_{0}} \pi R^{2} l^{\prime} \\
& \text { ar } \phi_{1}=\phi_{3}=0 \\
& \quad \Rightarrow E=\frac{\pi}{\varepsilon_{0}} \rho \frac{R^{2}}{2}=2 r_{2} \rho \frac{R^{2}}{r} \pi
\end{aligned}
$$

(c) (5) When $R \rightarrow 0$ the wire can be described by a linear charge density λ, show that $\lambda=Q / l$.[Hint: Compare the electric field above to the one obtained with a linear charge density λ]
For a thin withe, He Gaussioss surface is a cylinder with radius r and length e l^{\prime}
\qquad Check if solution is continued on the back.

$$
\begin{aligned}
& \phi_{E}=\phi_{1}+\phi_{2}+\phi_{3} ; \phi_{1}=\phi_{3}=0 \text { as } \vec{E} b \vec{A} \\
& \Rightarrow q_{2}=E(8 \pi 2 l)=\frac{Q_{i n}}{\sum_{0}} \frac{2 h_{e}}{2} \\
& E=2 h_{e} \frac{Q_{i n}}{2}=2 \pi h_{e} \frac{\rho R^{2}}{2} \Rightarrow A_{i n}=\pi R^{2} \rho=\frac{\pi R^{2}}{\pi P^{2} l}=\frac{Q}{l}
\end{aligned}
$$

Part II: Ampere's Law (20)
(a) (4) Assume that the charges of the cylinder in part I are now moving with a drift velocity v_{d}, determine the expression of the current I.

$$
\begin{aligned}
& I=\frac{d G}{d t} \text { or } Q_{2} N_{q} \text { tenth } N=n V=n A x \\
& \Rightarrow B=q n A \frac{d x}{d t} \text { on the average } B=n q A V_{d}
\end{aligned}
$$

(b) (6) Show that the magnetic field inside the wire has the expression $B=\left(\frac{\mu_{0} I}{2 \pi R^{2}}\right) r$; make your own drawing to show its direction. We use Ampere's law: $\oint_{A \cdot L} \vec{B} \cdot d \vec{l}=\mu_{0} \mathbb{D}_{i n}$ We choose the Ampreaion loop (A.L.C.) of be a circe with radius r.
$\Rightarrow \oint \vec{B} \cdot d l=\oint B d l=B \oint d l=B(r-r)=\mu l_{i N}$ The wrient is unlors \Rightarrow

$$
j=\frac{B}{A}=\frac{B_{i N}}{A_{R L L}} \Rightarrow B_{i N}=\frac{\pi R^{2}}{\pi R^{2}} Z \Rightarrow B=\frac{\mu_{0} R}{m R^{2}} \cdot 2
$$

(c) (5) Show that the magnetic field outside the wire has the expression $B=\frac{k_{0} I}{2 \pi r}$; make a drawing to show its direction. (Same as above)
The Ampere's law : $\oint \vec{B} \cdot d \vec{l}$ c $\mu_{0} \mathbb{Z}_{\text {in }}$

$$
\begin{aligned}
& \Rightarrow B(3 \pi 2)=\mu_{0} Z \text { as } Q_{i n}=\mathbb{Z} \\
& \Rightarrow B=\frac{\mu_{0} R}{2 \pi}
\end{aligned}
$$

(d) (5) State and verify Gauss's law for magnetism using the wire with current I. Gauss's law for magrelism reads: $\phi_{B}=\int_{G, S} \vec{B} \cdot d \vec{A}=0$ We choose the hansom surface the be a coed cylinder aroinad the wire

$$
\begin{aligned}
\Rightarrow \phi_{B} & =\phi_{1} \neq \phi_{2}+\phi_{3} \\
\phi_{1}=\phi_{2}=\phi_{3} & =0 \text { as } \vec{B} \\
& \Rightarrow \phi_{B}=0
\end{aligned}
$$

$$
\phi_{1}=\phi_{2}=\phi_{3}=0 \text { as } \vec{B} b d \vec{A} \text { eresymuher }
$$

\qquad

A conducting rod of length $\ell=35.0 \mathrm{~cm}$ is free to slide on two parallel conducting bars as shown in the Figure below. Two resistors $R_{1}=2.00 \Omega$ and $R_{2}=5.00 \Omega$ are connected across the ends of the bars to form a loop. A constant magnetic field $B=2.50 \mathrm{~T}$ is directed perpendicularly into the page. An external agent pulls the rod to the left with a constant speed of $v=8.00 \mathrm{~m} / \mathrm{s}$.

(a) 5 Using Faraday's law, find the analytical expression and the value of the emf caused by the motion of the bar.

Take A to be a rectangle of length l and width $d x$ and taking advantage of te fact that the
magnetic field is constant leads to: $\varepsilon=-\frac{d \Phi_{B}}{d t}=-B \ell \frac{d x}{d t}=-B \ell v$
$\varepsilon=B \ell v=(2.50 \mathrm{~T})(0.350 \mathrm{~m})(8.00 \mathrm{~m} / \mathrm{s})=7.00 \mathrm{~V}$
(b) 6 Consider the motion of free electrons in the bar. Show that the same expression of the emf can be found when equilibrium is reached between the electric and the magnetic forces.
Two forces are acting on free electrons, the magnetic force $\vec{F}=q \vec{v} \times \vec{B} \quad$ and the electric force. At equilibrium, we have the sum of the forces is equal to 0 leading to $q E=q v B$ or $E=v B$
The electric field is related to the potential difference across the ends of the conductor:

$$
\Delta V=E \ell=B \ell v
$$

(c) 4 Show on the figure above the direction of the currents in the two resistors, and justify below.

The left-hand loop contains decreasing flux away from you, so the induced current in it will be raif clockwise, to produce its own field directed away from you. Let I represent the current flowing
\qquadCheck if solution is continued on the back.
upward through the $2.00-\Omega$ resistor. The right-hand loop will carry counterclockwise current. Let I_{3} be the upward current in the $5.00-\Omega$ resistor.
(d) 4 Determine the value of the current in both resistors.

$$
\begin{array}{ll}
\text { Kirchhoff's loop rule then gives: } & +7.00 \mathrm{~V}-I_{1}(2.00 \Omega)=0 \\
& I_{1}=3.50 \mathrm{~A} \\
\text { and } \quad+7.00 \mathrm{~V}-I_{3}(5.00 \Omega)=0 \quad I_{3}=1.40 \mathrm{~A} . &
\end{array}
$$

(e) 5 Find the total power delivered to the resistance of the circuit.

The total power dissipated in the resistors of the circuit is

$$
P=\varepsilon I_{1}+\varepsilon I_{3}=\varepsilon\left(I_{1}+I_{3}\right)=(7.00 \mathrm{~V})(3.50 \mathrm{~A}+1.40 \mathrm{~A})=34.3 \mathrm{~W}
$$

(f) 6 Find the magnitude of the applied force that is needed to move the rod with this constant velocity.

Method 1: The current in the sliding conductor is downward with value $I_{2}=3.50 \mathrm{~A}+1.40 \mathrm{~A}=4.90 \mathrm{~A}$. The magnetic field exerts a force of $F_{m}=\mathbb{I l} B=(4.90 \mathrm{~A})(0.350 \mathrm{~m})(2.50 \mathrm{~T})=429 \mathrm{~N}$ directed toward the right on this conductor. An outside agent must then exert a force of 429 N to the left to keep the bar moving.
\qquad

Part IV: AC circuits (30)
We consider a circuit composed of an AC power source, supplying a current $I=I_{\max } \sin (\omega t)$, a resistor R and an inductor L.
(a) (4) Consider that the resistance alone is connected to the power supply, determine the expression of the potential difference across it.
We use Ohm's law $\Delta v=R \mathbb{Z}$

$$
\Rightarrow \Delta V(t)=R \mathbb{B}_{\max } \text { in } \omega t \Rightarrow\left\{\begin{array}{c}
\Delta V_{m a x}=R \mathbb{B}_{\text {max }} \tag{2}\\
Q=0
\end{array}\right.
$$

M
(b)(4) Consider that the inductor alone is connected to the power supply, determine the expression of the potential difference across it.
Kharchhofl's loop rule leads to

$$
\begin{aligned}
& \text { Khubchhof/'soop rule leads b } \\
& \qquad \Delta V_{L}-L \frac{d R}{d T}=0 \Rightarrow \Delta V=\omega L B_{\text {max }} \operatorname{coscut} \\
& \Rightarrow \Delta V=L \omega R_{\max } x_{n}(\omega t+\pi / 2) \Rightarrow\left\{\begin{array}{c}
\Delta V_{L, \text { max }}=L \omega B_{m a x} \\
a=+\pi / 2
\end{array}\right. \\
& \text { (c) (6) When both } R \text { and } L \text { are put in series, determine the impedance of the } R \\
& \text { circuit. }
\end{aligned}
$$ circuit.

We ne the phase disgzam for

$$
\Delta V=\Delta V_{L}+\Delta V_{R}
$$

$$
\text { ar } \Delta V_{H}=\sqrt{\Delta V_{L \text { max }}^{2}+T} \Delta V_{R_{1} \text { max }}^{2}
$$

$$
\Delta V_{M}=\sqrt{R^{2}+L^{2} \omega^{2}} \times \mathbb{C}_{\operatorname{ma\alpha }} \text {. }
$$

(d)(5) Determine the expression of the circuit phase.
\qquad
(e) (6) Use the axes below to plot the current $I_{\max }$ vs. ω assuming $\Delta V_{\max }$ is constant and discuss the behavior of this circuit at low frequencies $(\omega \rightarrow 0)$ and at high frequencies $(\omega \rightarrow \infty)$.
as $\omega \rightarrow 0 \Rightarrow Z \Rightarrow R \Rightarrow B_{\text {max }} \rightarrow \frac{\Delta V_{\text {mad }}}{R}$
as $\omega \rightarrow \infty \Rightarrow z \rightarrow \infty \Rightarrow I^{\prime}$

Rid Uk roldornohip behouen He pedenlisel drop across the
 angular frequency.

$$
\Delta V_{2}=Z_{L} \mathbb{Z} \Rightarrow \Delta V_{L \text { max }}=L \omega Z_{\text {max }}
$$

$$
=\frac{L w}{\sqrt{R^{2}+C^{2} w^{4}}} \Delta V_{m}
$$

This circuit can be roved as a high-paso fitter when ascillattas at law frequency w are not 'visible' arontt the inducts.
\qquad

