DO NOT OPEN THIS EXAM BEFORE YOU ARE TOLD TO BEGIN

NAME
ID Number \qquad
Section \qquad SOLUTION

Useful information $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$.

Grading

A	
B	
TOTAL	

Part A: Multiple choice questions (18\%)

1. (3\%) Two charged particles, Q_{1} and Q_{2}, are a distance r apart with $Q_{2}=$ $5 Q_{1}$. Compare the forces they exert on one another when F_{1} is the force Q_{2} exerts on Q_{1} and F_{2} is the force Q_{1} exerts on Q_{2}.
a. $\quad F_{2}=5 F_{1}$.
b. $\quad F_{2}=-5 F_{1}$.
c. $\quad F_{2}=F_{1}$.
(1) $\mathrm{F}_{2}=-\mathrm{F}_{1}$.
e. $\quad 5 \mathrm{~F}_{2}=\mathrm{F}_{1}$.
2. (3\%) A balloon is charged with Q and inflated leading to the increase of its radius, how does the electric field inside and outside (at a distance r from the center) changes?
a. Increase and increase
b. Increase and decrease
c. Decrease and decrease
d. Decrease and increase
(C) None of the above
3. (3\%) A hemispherical surface (half of a spherical surface) of radius R is located in a uniform electric field of magnitude E that is parallel to the axis of the hemisphere. What is the magnitude of the electric flux through the hemisphere surface?
(a) $\pi R^{2} E$
b. $\quad 4 \pi R^{2} E / 3$
c. $\quad 2 \pi R^{2} E / 3$
d. $\pi R^{2} E / 2$
e. $\quad \pi R^{2} E / 3$
\qquadCheck if solution is continued on the back.
4. (3\%) A spaceship encounters a single plane of charged particles, with the charge per unit area equal to σ. The electric field a short distance above the plane has magnitude \qquad and is directed \qquad to the plane.
a. $\frac{\sigma}{2 \varepsilon_{0}}$, parallel
(b) $\frac{\sigma}{2 \varepsilon_{0}}$, perpendicular
c. $\frac{\sigma}{\varepsilon_{0}}$, parallel
d. $\frac{\sigma}{\varepsilon_{0}}$, perpendicular
e. $\frac{2 \sigma}{\varepsilon_{0}}$, parallel
5. (3\%) Equipotentials are lines along which
a. the electric field is constant in magnitude and direction.
b. the electric charge is constant in magnitude and direction.
c. maximum work against electrical forces is required to move a charge at constant speed.
(1) a charge may be moved at constant speed without work against electrical forces.
e. charges move by themselves.
$6(3 \%)$ A series of 3 uncharged concentric shells surround a small central charge q. The charge distributed on the outside of the third shell is
a. $-3 q$.
b. $-(\ln 3) q$.
(c) $+q$.
d. $\quad+(\ln 3) q$.
e. $+3 q$.
\qquadCheck if solution is continued on the back.

Part B-Problems (82%)

1. ($\mathbf{2 0} \%$) A small, $2.00-\mathrm{g}$ plastic ball is suspended by a $20.0-\mathrm{cm}-\mathrm{long}$ string in a uniform electric field as shown in the Figure below. If the ball is in equilibrium when the string makes a 15.0° angle with the vertical, what is the net charge on the ball?

At equilibrium, use in e Newton's law: $\Sigma \vec{F}=c$ (5) $\sum \vec{F}=\vec{W}+\vec{T}+\vec{F}_{e s}=0$. where $\overrightarrow{F_{e s}}=q \vec{E}$ We projed this equation an $x: q E-T \sin \theta=0$ on $y:-\infty+T \cos \theta=0$
\qquad

2． 27% ）Gauss law
a． $\mathbf{(1 1 \%)}$ Consider a hydrogen atom formed of one proton and one electron assumed to circulate around at a radius a ．Using Gauss＇s law，determine the electric field at a radius $r<a$ ．
－Gaurs＇s low state $\phi_{1=}=\int_{G . S} \vec{E} d \vec{A}=\frac{Q_{i n}}{\varepsilon_{0}}$（2）
－We select the Gaussian misface（G．S．）to bel a sphere centered on He predon．（2）

$$
\begin{equation*}
\Rightarrow \phi_{B}=\int_{G \cdot S} E \cdot d A=E \int_{G S} d A=E A=E\left(4 \pi r^{2}\right), ~(a) \tag{4}
\end{equation*}
$$

$-\theta_{\text {in }}=+9 \Rightarrow E=\frac{1}{4 \pi \varepsilon_{0}} \frac{9}{r^{2}}=h_{c} \frac{q}{r^{2}}$
b．（8\％）What is the total flux across a cube centered at the proton and with side
$x=a / 3$ ？
The total flask across a cube certered ot n He proton
$\phi_{\text {cube }}=\frac{Q_{i n}}{\xi}$ according 后 Gauss＇s law since
Ul C．S．is arbitrary $\Rightarrow \phi_{\text {（3）}}=\frac{9}{2_{0}}$
c．(8%) What is the electric field at $r>a$ ？
At $n>a$ ，Gauss＇s law yields $P_{\varepsilon}=\int_{G} \vec{E} \cdot d \vec{A}=\frac{Q_{\text {in }}}{3}$ ar $Q_{\text {in }}(f o r, r>0)=0=+q-q \Rightarrow$

$$
\begin{equation*}
E=0 \tag{5}
\end{equation*}
$$

\qquad
3.(35\%) A thin rod extends along the z-axis from $z=-d$ to $z=d$. The rod carries a positive charge Q uniformly distributed along its length $2 d$ with charge density $\lambda=Q / 2 d$.
(a)(12\%) Calculate the electric potential at a point $z>d$ along the z-axis.
$\lambda=\frac{D}{2 d}$. Let dz dentine movement

$$
\text { (4) } d q \text { change } d q \Rightarrow d q=\lambda \alpha z(2)
$$

$$
d \stackrel{(4)}{d}=k_{k} \frac{d q}{z-z^{\prime}}=k_{e} \lambda \frac{d z^{\prime}}{z-z^{\prime}}
$$

(b)(8\%) What is the change in potential energy if an electron moves from $z=4 d$ to z $=3 d$?

$$
\begin{align*}
& \left.v(z=4 d)=k_{1} \lambda \log \frac{(4+d}{4 \lambda-a}\right)=k_{c} \lambda \log \left(\frac{1}{3}\right)(2) \\
& v(z=3 d)=k_{c} \lambda \log 2 \tag{2}
\end{align*}
$$

The Satankidel energy

$$
\begin{aligned}
\Delta U & =q \Delta V \\
& \left.=-\operatorname{ctc} \lambda \log \left(\frac{6}{5}\right)\right](2)
\end{aligned}
$$

(c)(7\%) If the electron started out at rest at the point $z=4 d$, what is its velocity at $z=$ $3 d$?
We we the conservation of energy

$$
\begin{align*}
\Rightarrow & \Delta W E=-\Delta R \tag{4}\\
& \frac{1}{2} m y^{2}-O=+e h_{e} \lambda \log \left(\frac{6}{5}\right) \\
\Rightarrow V_{g}= & \sqrt{\frac{2 l e l \lambda}{m}} \log \left(\frac{6}{5}\right) \tag{3}
\end{align*}
$$

(d) (8%) What is the electric field at a point $z>d$?

The electric ford is attained from the potential by differmialion-
\Rightarrow (2) $\left.E_{n}=-\frac{\partial V}{\partial x}=0\right\} \begin{aligned} & V \text { does not depend on } \\ & x \text { andy }\end{aligned}$
(2) $F y=-\frac{\partial V}{\partial y}=0 \int x$ and y

$$
E z=-\frac{\gamma V}{\partial z}=-b_{e} \lambda \frac{\partial}{\partial z}\left[\log \left(\frac{z+d}{z-d}\right)\right]=\frac{2 k \lambda d}{z^{2}-d^{2}}=\frac{\frac{k Q}{z^{2}-d}}{}
$$

(4)
\qquad

