Physics 211 Final Exam
January 28, 2008

Your name:

ID number:

Time given: 120 minutes

Please provide your reasoning for each step of your solution (providing an answer without a solution is not enough)

Problem 1

A uniformly charged insulating shell has internal and external radii R and $3 R$ and the volume charge density is ρ. The points A and B are located at the inner and outer surfaces of the shell, as shown on the Figure 1. Find the potential difference $\Delta V_{A B}=V_{B}-V_{A}$.

Problem 2

An electric circuit consists of the 3 batteries with the voltages $\Delta V_{1}=1 V, \Delta V_{2}=4 V$ and $\Delta V_{3}=8 V$ and 3 resistors $R_{1}=3 \Omega, R_{2}=2 \Omega$ and $R_{3}=8 \Omega$, as shown on the Figure 2. Find the electric currents in each of the resistors.

Problem 3

In the circuit shown on the Figure 3, two capacitors with capacitances $C_{1}=C$ and $C_{2}=4 C$ are originally disconnected, as shown on the Figure 3, and the capacitor C_{1} carries the charge Q while the charge of C_{2} is $3 Q$. Then the keys A and B are switched on simultaneously. Find the total heat dissipated in the resistor R after the switches A and B are on.

Problem 4

Two point charges $q_{1}=10^{-4} C$ and $q_{2}=10^{-3} C$ are separated by the distance $d=$ $10^{-2} m$ along the x-axis and move with velocities vecv $_{1}=2 \vec{i}+3 \vec{j}\left(\frac{m}{s}\right)$ and $\overrightarrow{v_{2}}=3 \vec{i}+4 \vec{j}\left(\frac{m}{s}\right)$ respectively. Find the magnetic interaction force between two charges.

Problem 5

A conductor with the cylindrical cross-secrion of the radius R carries the radially symmetric current density $j(r)=\alpha r^{2} ; r \leq R$ where α is a given constant (the current is into the page). Find the magnetic field as the function of the distance from the conductor's symmetry axis, both inside and outside the conductor.

Problem 6

A rectangular contour, consisting of the resistor R and two conducting rods (each of them having the same resistance $2 R$) is placed in a uniform magnetic field B (into the page), perpendicular to the plane of the contour. The rods move with velocities v and $3 v$ respectively, as shown on the Figure 6 . Find the magnitude and the direction of the current in the resistor R.

