

Physics Department

Physics 211 Final Exam

September 2, 1996 Time 2 hours

Don't forget to write your name, your I.D. # and your section on your booklet.

1) 10 marks

A certain charge Q is to be divided into two parts (Q-q) and q. What is the relation of Q to q if the two parts, placed a given distance apart, are to have a maximum Coulomb repulsion? LIBRARY

2) 10 marks

A neutron is thought to be composed of one "up" quark of charge + 2 e and two "down" quarks each having charge -e/3. If the down quarks are 2.6 F apart inside the neutron, what is the repulsive electrical force between them? (1 F = Fermi = 10^{-15} m)

or centra

3) 15 marks

A charge per unit length of λ is uniformly distributed along the upper half of an infinite insulating rod and a charge per unit length of $-\lambda$ is uniformly distributed along the lower half, as shown in the figure. Find the electric field \bar{E} at P situated at a distance r from the point O.

4) 15 marks

The spherical region a < r < b carries a charge per unit volume of $\rho = A/r$, where A is a constant. At the center (r = 0) of the enclosed cavity is a point charge q. What should be the value of A so that the electric field in the region a < r < b has constant magnitude?

5) 15 marks

Knowing that the potential in the space is given by $V(x,y,z) = \xi(x^2 + y^2)$ Where ξ a is a constant. Find the electric field \vec{E} and sketch the line fields in the space.

6) 10 marks

Find the equivalent capacitance between a and b of the circuit shown where all the capacitors are identical.

7) 10 marks

Show that the plates of a parallel-plate capacitor attract each other with a force given by $F = \frac{q^2}{2\epsilon_A A}$. Where q is the charge and A is the area of the plate.

8) 10 marks

When 115 V is applied across a 9.66 m long wire, the current density is 1.42 A/m². Calculate the conductivity of the wire material.

9) 15 marks

Calculate the current i if E = 12 V and $R = 3\Omega$. (Hint, use $\Delta \leftrightarrow Y$ transformation).

10) 15 marks

A long, rigid conductor, lying along the x axis, carries a current of 5.0 A in the (-x) direction. A magnetic field \vec{B} is present, given by $\vec{B} = 3 \hat{x} + 8 x^2 \cdot \hat{y}$, with x in meters and \vec{B} in mT. Calculate the force on the 2.0 m segment of the conductor that lies between x = 1.2 m and x = 3.2 m.

11) 15 marks

Two long parallel wires a distance 2d apart carry equal currents i in the same direction, into the plane of the figure. Derive an expression for the magnetic field B at a point P on the line connecting the wires and a distance x from the point midway between them. Plot B against x.

12) 15 marks

- a) Find an expression for the energy density as a function of the radial distance r for a toroid of rectangular cross section.
- b) Integrating the energy density over the volume of the toroid, calculate the total energy stored in the field of the toroid.

13) 15 marks

Consider the circuit shown:

Describe qualitatively and quantitatively what happens if one of the switches is closed and the other two switches are open, starting with switch S_1 closed, then S_2 and S_3 ?

14) 15 marks

In an LC circuit with L = 52.2 mH and C = 4.21 μ F, the current is initially a maximum. How long will it take before the capacitor is fully charged for the first time?

Which one of the following circuits resonate? What is its resonance frequency?

