Yowr naxne:

ID number:

Time given: 60 minutes

Please provide your reasoning for each step of your solution (providing an answer without a solution is not enough)

Problem 1
The circuit shown on the Figure 1 consists of 3 batteries with the voltages $\Delta V_{1}=$ $5 \mathrm{~V}, \Delta V_{2}=10 \mathrm{~V}, \Delta V_{3}=15 \mathrm{~V}$ and two resistors $R_{1}=5 \Omega$ and $R_{2}=10 \Omega$ Find the currents through each of the resistors.

Problem 2
The $R C$-circuit consists of the battery with the voltage ΔV, the capacitor C, two resistors R and $2 R$ and the switch, as shown on the Figure 2 . Initially the capacitor is not charged. The switch is turned on at the moment of time $t=0$. Find the electric current through the battery as the function of time.

Problem 3

A closed conducting contour of a certain unknown shape carries unknown constam, electric current. The contour is placed in the constant external magnetic field given by \bar{B} $(\vec{i}+2 \vec{j}+3 \vec{k}) T$ teslas. It is known that the difference between the minimal and maximal values of the potential energy for various possible orientations of the contour in this magnetic field is equal to $\Delta W=20 J=20 N \times m$ (the mechanical potential energy of the frame due to, its mass can be neglected) Find the magnitude of the torque acting on the contour due to the magnetic field, when the contour is located in the $x y$-plane.

Problem 4

A charged particle 1 has the mass M and the charge Q and a charged particle 2 Wis the mass $2 M$ and the charge $3 Q$. Both particles are first accelerated by the same potential difference ΔV and then enter the region with the constant magnetic field B. The direction of the magnetic field is perpendicular to the directions of the velocitles of the both particles. Find the radius of the orbit of the particle 2 if the radius of the particle l's orbit is equal to R.

