Physics 211 Quiz 2

April 25,2005

Your name:

ID number:

Time given: 60 minutes

Please provide your reasoning for each step of your solution (providing an answer without a solution is not enough)

Problem 1 (40 pts)
A spherical conducting shell with the internal and the external radii equal to R_{1} and R_{2} has a non-constant resistivity which grows linearly with the distance r from the origin $\mathrm{O}: \rho(r)=\alpha r\left(R_{1} \leq r \leq R_{2}\right)$ where α is a given constant.
a) Find the total resistance between the inner and the outer surfaces of the shell
b) Find the current density $\vec{j}(r)$ as a function of r if a potential difference between the inner and the outer surfaces is equal to ΔV

$$
\begin{aligned}
& s(2)=\alpha r \\
& \left(R_{1} \leq r \leq R_{2}, \alpha=\right.\text { cons }
\end{aligned}
$$

Problem 2 ($40 p t_{s}$)
In the circuit shown on the Figure 1 , the resistances are $R_{1}=1 \Omega, R_{2}=2 \Omega, R_{3}=4 \Omega$ and the voltages of the batteries $\Delta V_{1}=2 V, \Delta V_{2}=3 V, \Delta V_{3}=5 V$. The capacitance C of the capacitor is unknown. The switches A and B are turned on simultaneously at $t=0$.
a) Find the currents I_{1}, I_{2}, I_{3} through the resistors R_{1}, R_{2}, R_{3} at, $t=0$, ie. immediately after the switches are closed.
b) Find the currents I_{1}, I_{2}, I_{3} through all of the resistors at $t=\infty$, ie. after the switches would have been closed for a very long (infinite) time.

Problem 3 (20 pts)

A non-uniform magnetic field has the form: $\vec{B}(x, y, z)=y z \vec{i}+2 x z \vec{j}+3 x y \vec{k}$ (T) At a certain moment a charged particle moving with the velocity $\vec{v}=\vec{i}+\vec{j}+\vec{k}\left(\frac{m}{s}\right)$ is passing through the point A with the coordinates $10 \vec{i}+y \vec{j}+z \vec{k}(\mathrm{~m})$ where the values of y and z are unknown. Find the coordinates of the point A if it is known that the force exerted on the particle by the magnetic field is zero at the moment the particle is passing the point A.

