Physics 210L Final exam

January 12, 2008

Name:_____

Section number:_____

Instructor's Name:_____

ID number:_____

DO NOT START THE EXAM BEFORE YOU ARE TOLD TO BEGIN

Grading

Ι	
II-1	
II-2	
II-3	
TOTAL	

The duration of this exam is <u>60 minutes</u>.

No notes or books allowed.

Scientific calculators are allowed

All results should be given with the exact number of significant figures.

I. (50%)

In the "Standing Waves on a Stretched String" experiment, the string length is changed and the corresponding resonant frequencies are measured. The hanging mass is $M{=}12Kg{\pm}6\%$

The following results were obtained for the 2^{nd} Harmonic standing waves.

L(cm)	f(KHz)		
50	1.297		
60	0.901		
70	0.662		
80	0.507		
90	0.400		

You may find the formulae on page 4 useful.

a- Write down the necessary equation. (10%)

- b- Choose your variables such that you obtain a linear relationship between them. (10%)
- c- Use linear regression to find the slope of your line along with its error. (15%)

d- Determine from the slope the linear density of the string along with its error. (15%)

Linear Regression

The *method of least squares* is used to fit a curve (find a theoretical equation) to a set of experimental data. First assume that a linear relation exists between y and x

$$y = Ax + B \tag{1}$$

Substitution of $x = x_i$ will in general not give the value of y_i . The "errors" will be

$$e_{i} = y - y_{i} = Ax_{i} + B - y_{i}$$
 (2)

To determine the best straight line that fits the N, sets of data, A and B have to be chosen so that the sum of the squares of the "errors" is minimized. This means that the simultaneous equations, obtained by equating the partial derivatives of $(y - y_i)^2$ with respect to A and B to zero, should be solved. This condition leads then to the following results

$$A = \frac{N\sum(x_i y_i) - \sum x_i \sum y_i}{\Delta}$$
(3)

and

$$B = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum (x_i y_i)}{\Delta}$$
(4)

where

$$\Delta = N \sum x_i^2 - (\sum x_i)^2 \tag{5}$$

The *correlation coefficient* r provides an indicator of how good a fit the best straight line is. This coefficient is defined as

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$
(6)

For r = 0, the values of x and y are independent of one another and there is no linear correlation. The closer r is to +1 or to -1, the better the linear correlation is.

Finally, the error in A is given by:

$$\sigma_A^2 = \frac{N}{N-2} \frac{\sum e_i^2}{\Delta}$$

II. Questions

- 1. (15%) In the "Michelson Interferometer" experiment,
 - a- Explain why the interference fringes shown on the screen appear to move when we change the inclination of the glass plate placed between the beam splitter and the mirror. (8%)

b- In this part of the experiment what variables were measured in order to determine the index of refraction of the glass plate? (7%)

2. (20%) In an attempt to determine the gravitational acceleration experimentally, the motion of an object down an inclined frictionless surface was studied. The time needed to cover a certain distance d was measured. The inclination angle is $\theta = 17^{\circ} \pm 0.1\%$. The following results were obtained:

t(seconds)	d(cm)	a()
0.198	6	
0.262	10	
0.286	12	
0.321	14	

a- Determine the average value of the acceleration down the incline along with its error. (10%)

b- Derive the relationship between the acceleration a, the gravitational acceleration g, and the inclination angle θ .(5%)

c- Find g along with its error. (5%)

What are the different parts of a spectrometer and what are the functions of each? (15%)