

EXERCISESOLUTIONS
1.2 Three definitions of "bit":
(1) A binary digit (p.1).
(2) Past tense of "bite" (p.1).
(3) A small amount (pp. 6, 10).
1.3

ASIC Application-Specific Integrated Circuit
CAD Computer-Aided Design
CD Compact Disc
CO Central Office
CPLD Complex Programmable Logic Device
DAT Digital Audio Tape
DIP Dual In-line Pin
DVD Digital Versatile Disc
FPGA Field-Programmable Gate Array
HDL Hardware Description Language
IC Integrated Circuit
IP Internet Protocol
LSI Large-Scale Integration
MCM Multichip Module

MSI Medium-Scale Integration

NRE Nonrecurring Engineering
OK Although we use this word hundreds of times a week whether things are OK or not, we have probably rarely wondered about its history. That history is in fact a brief one, the word being first recorded in 1839, though it was no doubt in circulation before then. Much scholarship has been expended on the origins of OK, but Allen Walker Read has conclusively proved that OK is based on a sort of joke. Someone pronounced the phrase "all correct" as "oll (or orl) correct," and the same person or someone else spelled it "oll korrect," which abbreviated gives us OK. This term gained wide currency by being used as a political slogan by the 1840 Democratic candidate Martin Van Buren, who was nicknamed Old Kinderhook because he was born in Kinderhook, New York. An editorial of the same year, referring to the receipt of a pin with the slogan O.K., had this comment: "frightful letters . . . significant of the birth-place of Martin Van Buren, old Kinderhook, as also the rallying word of the Democracy of the late election, 'all correct' Those who wear them should bear in mind that it will require their most strenuous exertions ... to make all things O.K." [From the American Heritage Electronic Dictionary (AHED), copyright 1992 by Houghton Mifflin Company]
PBX Private Branch Exchange
PCB Printed-Circuit Board
PLD Programmable Logic Device
PWB Printed-Wiring Board
SMT Surface-Mount Technology
SSI Small-Scale Integration
VHDL VHSIC Hardware Description Language
VLSI Very Large-Scale Integration
1.4

ABEL Advanced Boolean Equation Language
CMOS Complementary Metal-Oxide Semiconductor
JPEG Joint Photographic Experts Group
MPEG Moving Picture Experts Group
OK (see above)
PERL According to some, it's "Practical Extraction and Report Language." But the relevant Perl FAQ entry, in perlfaq1.pod, says "never write 'PERL', because perl isn't really an acronym, apocryphal folklore and post-facto expansions notwithstanding." (Thanks to Anno Siegel for enlightening me on this.)
VHDL VHSIC Hardware Description Language
1.8 In my book, "dice" is the plural of "die."

EXERCISESOLUTIONS
2.1
(a) $1101011_{2}=6 \mathrm{~B}_{16}$
(b) $174003_{8}=1111100000000011_{2}$
(c) $\quad 10110111_{2}=\mathrm{B} 7_{16}$
(d) $67.24_{8}=110111.0101_{2}$
(e) $10100.1101_{2}=14 . \mathrm{D}_{16}$
(f) $\mathrm{F} 3 \mathrm{~A}_{16}=1111001110100101_{2}$
(g) $11011001_{2}=331_{8}$
(h) $\mathrm{AB}_{3} \mathrm{D}_{16}=1010101100111101_{2}$
(i) $101111.0111_{2}=57.34_{8}$ (j) $15 \mathrm{C} .38_{16}=101011100.00111_{2}$
2.3 (a) $1023_{16}=1000000100011_{2}=10043_{8}$
(b) $7 \mathrm{E}_{\mathrm{BA}}^{16} 1011111001101010_{2}=77152_{8}$
(c) $\mathrm{ABCD}_{16}=1010101111001101_{2}=125715_{8}$
(d) $\mathrm{C} 350_{16}=1100001101010000_{2}=141520_{8}$
(e) $9 E 36.7 \mathrm{~A}_{16}=1001111000110110.0111101_{2}=117066.364_{8}$
(f) DEAD. BEEF $_{16}=1101111010101101.1011111011101111_{2}=157255.575674_{8}$
2.5 (a) $1101011_{2}=107_{10}$
(b) $174003_{8}=63491_{10}$
(c) $10110111_{2}=183_{10}$
(d) $67.24_{8}=55.3125_{10}$
(e) $10100.1101_{2}=20.8125_{10}$ (f) $\quad \mathrm{F} 3 \mathrm{~A} 5_{16}=62373_{10}$
(g) $\quad 12010_{3}=138_{10}$
(h) $\mathrm{AB3D}_{16}=43837_{10}$
(i) $7156_{8}=3694_{10}$
(j) $\quad 15 \mathrm{C} .38_{16}=348.21875_{10}$
(a) $125_{10}=1111101_{2}$
(b) $3489_{10}=6641_{8}$
(c) $209_{10}=11010001_{2}$
(d) $\quad 9714_{10}=22762_{8}$
(e) $132_{10}=1000100_{2}$
(f) $23851_{10}=5 \mathrm{D}_{2} \mathrm{~B}_{16}$
(g) $727_{10}=10402_{5}$
(h) $\quad 57190_{10}=$ DF66 $_{16}$
(i) $1435_{10}=2633_{8}$
(j) $\quad 65113_{10}=$ FE59 $_{16}$
2.7
(a) 1100010
(b) $\begin{array}{r}1011000 \\ 101110 \\ -\quad 100101 \\ \hline 1010011\end{array}$
(c)

$111111110(\mathrm{~d})$
11011101
$+\quad 1100011$
101000000
---:
$+\quad 110010$
11011111

2.10 (a) 1372

$$
\begin{array}{r}
+\quad 4631 \\
\hline 59 \mathrm{~A} 3
\end{array}
$$

(b) 4F1A5
$\begin{array}{r}+\quad B 8 D 5 \\ \hline 5 A A 7 A\end{array}$
(c) F35B $\begin{array}{r}+\quad 27 \mathrm{E} 6 \\ \hline 11 \mathrm{~B} 41\end{array}$
(d) 1 B 90 F
$\begin{array}{r}\text { C44E } \\ \hline 27 \mathrm{D} 5 \mathrm{D}\end{array}$

decimal	+18	+115	+79	-49	-3	-100

signed-magnitude	00010010	01110011	01001111	10110001	10000011	11100100
two's-magnitude	00010010	01110011	01001111	11001111	11111101	10011100
one's-complement	00010010	01110011	01001111	11001110	11111100	10011011

2.18

$$
h_{j}=\sum_{i=0}^{3} b_{4 j+i} \cdot 2^{j}
$$

Therefore,

$$
\begin{aligned}
B & =\sum_{i-0}^{4 n-1} b_{i} \cdot 2^{i}=\sum_{i=0}^{n-1} h_{i} \cdot 16^{i} \\
-B & =2^{4 n}-\sum_{i=0}^{4 n-1} b_{i} \cdot 2^{i}=16^{n}-\sum_{i=0}^{n-1} h_{i} \cdot 16^{i}
\end{aligned}
$$

Suppose a $3 n$-bit number B is represented by an n-digit octal number Q. Then the two's-complement of B is represented by the 8 's-complement of Q.
2.22 Starting with the arrow pointing at any number, adding a positive number causes overflow if the arrow is advanced through the +7 to -8 transition. Adding a negative number to any number causes overflow if the arrow is not advanced through the +7 to -8 transition.
2.24 Let the binary representation of X be $x_{n-1} x_{n-2} \ldots x_{1} x_{0}$. Then we can write the binary representation of Y as $x_{m} x_{m-1} \ldots x_{1 x_{0}}$, where $m=n-d$. Note that x_{m-1} is the sign bit of Y. The value of Y is

$$
Y=-2^{m-1} \cdot x_{m-1}+\sum_{i=0}^{n-2} x_{i} \cdot 2^{i}
$$

The value of X is

$$
\begin{aligned}
X & =-2^{n-1} \cdot x_{n-1}+\sum_{i=0}^{n-2} x_{i} \cdot 2^{i} \\
& =-2^{n-1} \cdot x_{n-1}+Y+2^{m-1} \cdot x_{m-1}+\sum_{i=m-1}^{n-2} x_{i} \cdot 2^{i} \\
& =-2^{n-1} \cdot x_{n-1}+Y+2 \cdot 2^{m-1}+\sum_{i=m}^{n-2} x_{i} \cdot 2^{i}
\end{aligned}
$$

Case $1\left(x_{m-1}=0\right)$ In this case, $X=Y$ if and only if $-2^{n-1} \cdot x_{n-1}+\sum_{i=m}^{n-2} x_{i} \cdot 2^{i}=0$, which is true if and only if all of the discarded bits $\left(x_{m} \ldots x_{n-1}\right)$ are 0 , the same as x_{m-1}.
Case $2\left(x_{m-1}=1\right)$ In this case, $X=Y$ if and only if $-2^{n-1} \cdot x_{n-1}+2 \cdot 2^{m-1}+\sum_{i=m}^{n-2} x_{i} \cdot 2^{i}=0$, which is true if and only if all of the discarded bits $\left(x_{m} \ldots x_{n-1}\right)$ are 1 , the same as x_{m-1}.
2.25 If the radix point is considered to be just to the right of the leftmost bit, then the largest number is $1.11 \cdots 1$ and the 2 's complement of D is obtained by subtracting it from 2 (singular possessive). Regardless of the position of the radix point, the 1 s ' complement is obtained by subtracting D from the largest number, which has all 1 s (plural).

$$
\begin{aligned}
& B=-b_{n-1} \cdot 2^{n-1}+\sum_{i=0}^{n-2} b_{i} \cdot 2^{i} \\
& 2 B=-b_{n-1} \cdot 2^{n}+\sum_{i=0}^{n-2} b_{i} \cdot 2^{i+1}
\end{aligned}
$$

Case $1\left(b_{n-1}=0\right)$ First term is 0 , summation terms have shifted coefficients as specified. Overflow if $b_{n-2}=1$.
Case $2\left(b_{n-1}=1\right)$ Split first term into two halves; one half is cancelled by summation term $b_{n-2} \cdot 2^{n-1}$ if $b_{n-2}=1$. Remaining half and remaining summation terms have shifted coefficients as specified. Overflow if $b_{n-2}=0$.
2.32 001-010, 011-100, 101-110, 111-000.
2.34 Perhaps the designers were worried about what would happen if the aircraft changed altitude in the middle of a transmission. With the Gray code, the codings of "adjacent" alitudes (at 50-foot increments) differ in only one bit. An altitude change during transmission affects only one bit, and whether the changed bit or the original is transmitted, the resulting code represents an altitude within one step (50 feet) of the original. With a binary code, larger altitude errors could result, say if a plane changed from 12,800 feet $\left(000100000000_{2}\right)$ to 12,750 feet $\left(000011111111_{2}\right)$ in the middle of a transmission, possibly yielding a result of 25,500 feet (00011111111112).

2-4 DIGITAL CIRCUITS
2.37

E X E R C I S E S O L U T I O N S

3.1 The "probably" cases may cause damage to the gate if sustained.
(a) 0
(b) 1
(c) 0
(d) undefined
(e) 1
(f) probably 1
(g) probably 0
(h) probably 0
3.3 A logic buffer is a non-linear amplifier that maps the entire set of possible analog input voltages into just two output votages, HIGH and LOW. An audio amplifier has a linear response over its specified operating range, mapping each input voltage into an output voltage that is directly proprtional to the input voltage.
3.6 From the American Heritage Electronic Dictionary (AHED), copyright 1992 by Houghton Mifflin Company:
(1) A structure that can be swung, drawn, or lowered to block an entrance or a passageway.
(2) a. An opening in a wall or fence for entrance or exit. b. The structure surrounding such an opening, such as the monumental or fortified entrance to a palace or walled city.
(3) a. A means of access: the gate to riches. b. A passageway, as in an airport terminal, through which passengers proceed for embarkation.
(4) A mountain pass.
(5) The total paid attendance or admission receipts at a public event: a good gate at the football game.
(6) A device for controlling the passage of water or gas through a dam or conduit.
(7) The channel through which molten metal flows into a shaped cavity of a mold.
(8) Sports. A passage between two upright poles through which a skier must go in a slalom race.
(9) Electronics. A circuit with multiple inputs and one output that is energized only when a designated set of input pulses is received.

Well, definition (9) is closest to one of the answers that I had in mind. The other answer I was looking for is the gate of a MOS transistor.
3.14 A CMOS inverting gate has fewer transistors than a noninverting one, since an inversion comes "for free."
3.15 Simple, inverting CMOS gates generally have two transistors per input. Four examples that meet the requirements of the problem are 4 -input NAND, 4-input NOR , 2-in, 2-wide AND-OR-INVERT, and 2-in, 2-wide OR-AND-INVERT.
3.18 One way is that a romance could be sparked, and the designers could end up with a lot less time to do their work. Another way is that the stray perfume in the IC production line could have contaminated the circuits used by the designers, leading to marginal operation, more debugging time by the deidicated designers, and less time for romance. By the way, the whole perfume story may be apocryphal.
3.20 Using the maximum output current ratings in both states, the HIGH-state margin is 0.69 V and the LOW-state margin is 1.02 V . With CMOS loads (output currents less than $20 \mu \mathrm{~A}$), the margins improve to 1.349 V and 1.25 V , respectively.
3.21 The first answer for each parameter below assumes commercial operation and that the device is used with the maximum allowable (TTL) load. The number in parentheses, if any, indicates the value obtained under a lesser but specified (CMOS) load.

$V_{\text {OHmin }}$	$3.84 \mathrm{~V}(4.4 \mathrm{~V})$
$V_{\text {IHmin }}$	3.15 V
$V_{\text {ILmax }}$	1.35 V
$V_{\text {OLmax }}$	$0.33 \mathrm{~V}(0.1 \mathrm{~V})$
$I_{\text {Imax }}$	$1 \mu \mathrm{~A}$
$I_{\text {OLmax }}$	$4 \mathrm{~mA}(20 \mu \mathrm{~A})$
$I_{\text {OHmax }}$	$-4 \mathrm{~mA}(-20 \mu \mathrm{~A})$

3.22 Current is positive if it flows into a node. Therefore, an output with negative current is sourcing current.
3.23 The 74 HC 00 output drive is so weak, it's not good for driving much:
(a) Assume that in the LOW state the output pulls down to 0.33 V (the maximum $V_{\text {OL }}$ spec). Then the output current is $(5.0 \mathrm{~V}) / 120 \Omega=41.7 \mathrm{~mA}$, which is way more than the $4-\mathrm{mA}$ commercial spec.
(b) For this problem, you first have to find the Thévenin equivalent of the load, or 148.5Ω in series with 2.25 V . In the HIGH state, the gate must pull the output up to 3.84 V , a difference of 1.59 V across 148.5Ω, requiring 10.7 mA , which is out of spec. In the LOW state, we have a voltage drop of $2.25 \mathrm{~V}-0.33 \mathrm{~V}$ across 148.5Ω, so the output must sink 12.9 mA , again out of spec.
3.24 (In the first printing, change " 74 FCT 257 T " to " 74 HC 00 .") The specification for the 74 HC 00 shows a maximum power-supply current of $10 \mu \mathrm{~A}$ when the inputs aree at 0 or 5 V , but based on the discussion in Section 3.5.3 we would expect the current to be more when the inputs are at their worst-case values (1.35 or 3.15 V). If we consider "nonlogic" input values, the maximum current will flow if the inputs are held right at the switching threshold, approximately $V_{\mathrm{CC}} / 2$.
3.26 (In the first printing, change " 74 FCT 257 T " to " 74 HC 00 .") Using the formulas on page 119 , we can estimate that $R_{\mathrm{p}(\text { on })}=(5.0-3.84) / 0.004=290 \Omega$ or, using the higher value of V_{OHmin} in the spec, that $R_{\mathrm{p}(\text { on })}=(5.0-4.4) / 0.00002=30 \mathrm{~K} \Omega$. (The discrepancy shows that the output characteristic of this device is somewhat nonlinear.) We can also estimate $R_{\mathrm{n}(\mathrm{on})}=0.33 / 0.004=82.5 \Omega$.
3.29 The purpose of decoupling capacitors is to provide the instantaneous power-supply current that is required during output transitions. Printed-circuit board traces have inductance, which acts as a barrier to current flow at high frequencies (fast transition rates). The farther the capacitor is from the device that needs decoupling, the larger is the instantaneous voltage drop across the connecting signal path, resulting in larger spike (up or down) in the device's power-supply voltage.
3.32 (a) 5 ns.
3.38 Smaller resistors result in shorter rise times for LOW-to-HIGH transitions but higher power consumption in the LOW state. Stated another way, larger resistors result in lower power consumption in the LOW state but longer rise times (more ooze) for LOW -to-HIGH transitions.
3.39 The resistor must drop $5.0-2.0-0.37=2.63 \mathrm{~V}$ with 5 mA of current through it. Therefore $r=2.63 / 0.005=526 \Omega$; a good standard value would be 510Ω.
3.41 (The Secret of the Ooze.) The wired output has only passive pull-up to the HIGH state. Therefore, the time for LOW-to-HIGH transitions, an important component of total delay, depends on the amount of capacitive loading and the size of the pull-up resistor. A moderate capacitive load (say, 100 pF) and even a very strong pull-up resistor (say, 150Ω) can still lead to time constants and transition times (15 ns in this example) that are longer than the delay of an additional gate with active pull-up.
3.42 The winner is 74 FCT-T- 48 mA in the LOW state and 15 mA in the HIGH state (see Table 3-8). TTL families don't come close.
$3.46 n$ diodes are required.
3.49 For each interfacing situation, we compute the fanout in the LOW state by dividing $I_{\text {OLmax }}$ of the driving gate by $I_{\text {ILmax }}$ of the driven gate. Similarly, the fanout in the HIGH state is computed by dividing $I_{\text {OLmax }}$ of the driving gate by $I_{\text {IHmax }}$ of the driven gate. The overall fanout is the lower of these two results.

	Low-state		High-state		Overall		Excess	
Case	Ratio	Fanout	Ratio	Fanout	Fanout	State	Drive	
74LS driving 74LS	$\frac{8 \mathrm{~mA}}{0.4 \mathrm{~mA}}$	20	$\frac{400 \mu \mathrm{~A}}{20 \mu \mathrm{~A}}$	20	20	none		
74LS driving 74S	$\frac{8 \mathrm{~mA}}{2 \mathrm{~mA}}$	4	$\frac{400 \mu \mathrm{~A}}{50 \mu \mathrm{~A}}$	8	4	HIGH	$200 \mu \mathrm{~A}$	

3.50 For the pull-down, we must have at most a $0.5-\mathrm{V}$ drop in order to create a V_{IL} that is no worse than a standard LS-TTL output driving the input. Since $I_{\text {ILmax }}=0.4 \mathrm{~mA}$, we get $R_{\mathrm{pd}}=0.5 / 0.004=1250 \Omega$ and $P_{p d}=V_{\mathrm{IL}}^{2} / R_{\mathrm{pd}}=(0.5)^{2} / 1250=0.2 \mathrm{~mW}$. (Alternatively, $P_{\mathrm{pd}}=V_{\mathrm{IL}} I_{\mathrm{IL}}=0.5 \cdot 0.0004=0.2 \mathrm{~mW}$)
For the pull-up, we must have at most a $2.3-\mathrm{V}$ drop in order to create a V_{IH} that is no worse than a standard LS-TTL output driving the input. Since $I_{\mathrm{IH} \max }=20 \mu \mathrm{~A}$, we get $R_{\mathrm{pu}}=2.3 / 0.00002=115 \mathrm{k} \Omega$ and $P_{\mathrm{pu}}=V_{\mathrm{IH}}^{2} / R_{\mathrm{pu}}=(2.3)^{2} / 115000=0.046 \mathrm{~mW}$. (Alternatively, we could have calculated the result as $P_{\mathrm{pu}}=V_{\mathrm{IH}} I_{\mathrm{IH}}=2.3 \cdot 0.00002=0.046 \mathrm{~mW}$.) The pull-up dissipates less power.
3.52 The main benefit of Schottky diodes is to prevent transistors from saturating, which allows them to switch more quickly. The main drawback is that they raise the collector-to-emitter drop across an almost-saturated transistor, which decreases LOW -state noise margin.
3.55

$\begin{gathered} R_{\mathrm{VCC}} \\ (\Omega) \end{gathered}$	$\begin{gathered} R_{\mathrm{GND}} \\ (\Omega) \end{gathered}$	$V_{\text {Thev }}$ (V)	$R_{\text {Thev }}$ (Ω)	LOW-state			HIGH-state		
				$\begin{gathered} V_{\text {Thev }}-V_{\mathrm{OL}} \\ (\mathrm{~V}) \end{gathered}$	$\begin{gathered} I_{\mathrm{OL}} \\ (\mathrm{~mA}) \end{gathered}$	OK?	$\begin{gathered} V_{\mathrm{OH}}-V_{\mathrm{Thev}} \\ (\mathrm{~V}) \end{gathered}$	$\begin{gathered} I_{\mathrm{OH}} \\ (\mu \mathrm{~A}) \end{gathered}$	OK?
470	-	5.0	470	4.5	9.57	no	<0	-	yes
330	470	2.9375	193.875	2.4375	12.57	no	<0	-	yes

3.56

Case	LOW-state			HIGH-state		
	$V_{\text {ILmax }}$	$V_{\text {OLmax(T) }}$	Margin	$V_{\text {IHmin }}$	$V_{\text {OHmin(T) }}$	Margin
74HCT driving 74LS	0.8 V	0.33 V	0.47 V	2.0 V	3.84 V	1.84 V

3.57 For each interfacing situation, we compute the fanout in the LOW state by dividing $I_{\text {OLmax }}$ of the driving gate by $I_{\text {ILmax }}$ of the driven gate. Similarly, the fanout in the HIGH state is computed by dividing $I_{\text {OHmax }}$ of the driving gate by $I_{\text {ILmax }}$ of the driven gate. The overall fanout is the lower of these two results.

Case	LOW-state		HIGH-state		Overall Fanout	Excess	
	Ratio	Fanout	Ratio	Fanout		State	Drive
74HCT driving 74LS	$\frac{4 \mathrm{~mA}}{0.4 \mathrm{~mA}}$	10	$\frac{4000 \mu \mathrm{~A}}{20 \mu \mathrm{~A}}$	200	10	HIGH	$3800 \mu \mathrm{~A}$

3.64 TTL-compatible inputs have $V_{\mathrm{IH} \min }=2.0 \mathrm{~V}$, and typical TTL outputs have $V_{\mathrm{OH} \min }=2.7 \mathrm{~V}$. CMOS output levels are already high compared to these levels, so there's no point in wasting silicon to make them any higher by lowering the voltage drop in the HIGH state.
3.68 Including the DC load, a CMOS output's rise and fall times can be analyzed using the equivalent circuit shown to the right. This problem analyzes the fall time. Part (a) of the figure below shows the electrical conditions in the circuit when the output is in a steady HIGH state. Note that two resistors form a voltage divider, so the HIGH output is 4.583 V , not quite 5.0 V as it was in Section 3.6.1. At time $t=0$ the CMOS output changes to the LOW state, resulting in the situation depicted in (b). The output will eventually reach a steady LOW voltage of 0.227 V , again determined by a voltage divider.

At time $t=0, V_{\text {OUT }}$ is still 4.583 V , but the Thévenin equivalent of the voltage source and the two resistors in the LOW state is 90.9Ω in series with a $0.227-\mathrm{V}$ voltage source. At time $t=\infty$, the capacitor will be discharged to the Thévenin-equivalent voltage and $V_{\text {OUT }}$ will be 0.227 V . In between, the value of $V_{\text {OUT }}$ is gov-
erned by an exponential law:

$$
\begin{aligned}
V_{\text {OUT }} & =0.227 \mathrm{~V}+(4.583-0.227 \mathrm{~V}) \cdot e^{-t /\left(R_{n} C_{L}\right)} \\
& =4.356 \cdot e^{-t /\left(90.9 \cdot 100 \cdot 10^{-12}\right)} \mathrm{V} \\
& =4.356 \cdot e^{(-t) /\left(90.9 \cdot 10^{-9}\right)} \mathrm{V}
\end{aligned}
$$

Because of the DC load resistance, the time constant is a little shorter than it was in Section 3.6.1, at 9.09 ns . To obtain the fall time, we must solve the preceding equation for $V_{\text {OUT }}=3.5$ and $V_{\text {OUT }}=1.5$, yielding

$$
\begin{aligned}
t & =-9.09 \cdot 10^{-9} \cdot \ln \frac{V_{\mathrm{OUT}}}{4.356} \\
t_{3.5} & =1.99 \mathrm{~ns} \\
t_{1.5} & =9.69 \mathrm{~ns}
\end{aligned}
$$

The fall time t_{f} is the difference between these two numbers, or 7.7 ns . This is slightly shorter than the 8.5 ns result in Section 3.6.1 because of the slightly shorter time constant.
3.70 The time constant is $1 \mathrm{k} \Omega \cdot 50 \mathrm{pF}=50 \mathrm{~ns}$. We solve the rise-time equation for the point at which $V_{\text {OUT }}$ is 1.5 V , as on p. 118 of the text:

$$
\begin{aligned}
& t_{1.5}=-50 \cdot 10^{-9} \cdot \ln \frac{5.0-1.5}{5.0} \\
& t_{1.5}=17.83 \mathrm{~ns}
\end{aligned}
$$

3.77 The LSB toggles at a rate of 16 MHz . It takes two clock ticks for the LSB to complete one cycle, so the transition frequency is 8 MHz . The MSB's frequency is 2^{7} times slower, or 62.5 KHz . The LSB's dynamic power is the most significant, but the sum of the transitions on the higher order bits, a binary series, is equivalent to almost another 8 MHz worth of transitions on a single output bit. Including the LSB, we have almost 16 MHz , but applied to the load capacitance on just a single output. If the different ouputs actually have different load capacitances, then a weighted average would have to be used.

3.84 In the situations shown in the figure, the diode with the lowest cathode voltage is forward biased, and the anode (signal C) is 0.6 V higher. However, under the conditions specified in the exercise, neither diode is forward biased, no current flows through R_{2}, and V_{C} is 5.0 V .
3.85

```
/* Transistor parameters */
#define DIODEDROP 0.6 /* volts */
#define BETA 10;
#define VCE_SAT 0.2 /* volts */
#define RCE_SAT 50 /* ohms */
#define MAX_LEAK 0.00001 /* amperes */
main()
{
    float Vcc, Vin, R1, R2; /* circuit parameters */
    float Ib, Ic, Vce; /* circuit conditions */
    if (Vin < DIODEDROP) { /* cut off */
        Ib = 0.0;
        Ic = Vcc/R2; /* Tentative leakage current, limited by large R2 */
        if (Ic > MAX_LEAK) Ic = MAX_LEAK; /* Limited by transistor */
        Vce = Vcc - (Ic * R2);
    }
    else { /* active or saturated */
        Ib = (Vin - DIODEDROP) / R1;
        if ((Vcc - ((BETA * Ib) * R2)) >= VCE_SAT) { /* active */
            Ic = BETA * Ib;
            Vce = Vcc - (Ic * R2);
        }
        else { /* saturated */
            Vce = VCE_SAT;
            Ic = (Vcc - Vce) / (R2 + RCE_SAT);
        }
    }
}
```

3.86 In order to turn on $Q 2$ fully, V_{A} must be 1.2 V , corresponding to the sum of the base-to-emitter drops of $Q 2$ and Q5. This could happen if both X and Y are 0.95 V or higher. In reality, a somewhat higher voltage is required, because the voltage divider consisting of $R 1, R 3$, and other components diverts current from the base of $Q 2$ from turning on fully until X and Y are about 1.1 V or higher (at $25^{\circ} \mathrm{C}$, according to the typical characteristics graphed in the TI TTL Data Book).
3.90 When the output is HIGH, the relay coil will try to pull it to 12 volts. The high voltage will typically cause high current to flow through the output structure back into the $5-\mathrm{V}$ supply and will typically blow up the output. Open-collector TTL outputs theoretically should not have this problem, but most are not designed to withstand the $12-\mathrm{V}$ potential and transistor breakdown will occur. A few TTL open-collector devices are designed with "high-voltage outputs" to solve this problem.
$3.92 \mathrm{~F}=\mathrm{W} \cdot \mathrm{X}+\mathrm{Y} \cdot \mathrm{Z}$

W	X	Y	Z	G	F	W	X	Y	Z	G	F
0	0	0	0	1	0	1	0	0	0	1	0
0	0	0	1	1	0	1	0	0	1	1	0
0	0	1	0	1	0	1	0	1	0	1	0
0	0	1	1	0	1	1	0	1	1	0	1
0	1	0	0	1	0	1	1	0	0	0	1
0	1	0	1	1	0	1	1	0	1	0	1

W	X	Y	Z	G	F	W	X	Y	Z	G	F
0	1	1	0	1	0	1	1	1	0	0	1
0	1	1	1	0	1	1	1	1	1	0	1

3.96 When one module is driving HIGH and the other $n-1$ modules are output-disabled, each disabled module has a 74LS125 output sinking $20 \mu \mathrm{~A}$ of leakage current. In addition, each of the n modules has a 74LS04 input sinking $20 \mu \mathrm{~A}$ of leakage current. Thus, the total sink current is $(n-1+n) \cdot 20 \mu \mathrm{~A}$. The 74LS125 can source 2.6 mA in the HIGH state, so we find

$$
\begin{aligned}
(n-1+n) \cdot 20 \mu \mathrm{~A} & \leq 2.6 \mathrm{~mA} \\
n & \leq 65
\end{aligned}
$$

When one module is driving LOW and the other $n-1$ modules are output-disabled, each disabled module has a 74LS125 output sourcing $20 \mu \mathrm{~A}$ of leakage current. In addition, each of the n modules has a 74LS04 input sourcing 0.4 mA . Thus, the total source current is $(n-1)) \cdot 20 \mu \mathrm{~A}+n \cdot 0.4 \mu \mathrm{~A}$. The 74LS125 can sink 24 mA in the LOW state, so we find

$$
\begin{aligned}
(n-1) \cdot 20 \mu \mathrm{~A}+n \cdot 0.4 \mathrm{~mA} & \leq 24 \mathrm{~mA} \\
n & \leq 57
\end{aligned}
$$

Overall, we require $n \leq 57$.

EXERCISESOLUTIONS
4.2

T2:

4.3
$\frac{\text { T3' }}{} \frac{}{} \quad \mathrm{X} \cdot \mathrm{X} \quad=\quad \mathrm{X}$

0	0	$=$	0
1	1	$=$	1

4.4

T6				
X	Y	$\mathrm{X}+\mathrm{Y}$	$=$	$\mathrm{Y}+\mathrm{X}$
0	0	0	$=$	0
0	1	1	$=$	1
1	0	1	$=$	1
1	1	1	$=$	1

4-2 DIGITAL CIRCUITS

4.5 The original expression assumes precedence of \cdot over + , that is, the expression is $X+(Y \cdot Z)$. The parenthesization must be retained for the correct result, $\mathrm{X}^{\prime} \cdot\left(\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)$, or the precedence must be swapped.
4.6 The answers for parts (a), (b), (c) are as follows.

$$
\begin{aligned}
& W \cdot X \cdot Y \cdot Z \cdot\left(W \cdot X \cdot Y \cdot Z^{\prime}+W \cdot X^{\prime} \cdot Y \cdot Z+W^{\prime} \cdot X \cdot Y \cdot Z+W \cdot X \cdot Y^{\prime} \cdot Z\right) \\
& =W \cdot X \cdot Y \cdot Z \cdot W \cdot X \cdot Y \cdot Z^{\prime}+W \cdot X \cdot Y \cdot Z \cdot W \cdot X^{\prime} \cdot Y \cdot Z+W \cdot X \cdot Y \cdot Z \cdot W^{\prime} \cdot X \cdot Y \cdot Z+W \cdot X \cdot Y \cdot Z \cdot W \cdot X \cdot Y^{\prime} \cdot Z(T 8) \\
& =0+0+0+0\left(T 6^{\prime}, T 5^{\prime}, T 2^{\prime}\right) \\
& =0\left(A 4^{\prime}\right)
\end{aligned}
$$

(a) | X | Y | Z | F |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |

(b) | W | X | Y | Z | F |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |

$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 0 & 1 & 1 & 1\end{array}$
1000
$\begin{array}{lllll}0 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}$
100001
$1 \begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}1 & 0 & 1 & 1 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}$
4.9
(a) $\mathrm{F}=\mathrm{X}^{\prime} \cdot \mathrm{Y}+\mathrm{Y}^{\prime} \cdot \mathrm{X}=(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}\right)$
(b) $F=A \cdot B=(A+B) \cdot\left(A+B^{\prime}\right) \cdot\left(A^{\prime}+B\right)$
4.12 (1) Including inverters makes the problem too difficult. (2) In modern PLD-based designs, inverters do cost nothing and really can be ignored.

(b)

$$
F=W^{\prime} \cdot X+X^{\prime} \cdot Y^{\prime} \cdot Z+X \cdot Y
$$

4.14
(a)

(b)

$F^{\prime}=X^{\prime} \cdot Z^{\prime}+X \cdot Y^{\prime}+W \cdot X \cdot Y^{\prime}$
$F=(X+Z) \cdot\left(X^{\prime}+Y\right) \cdot\left(W^{\prime}+X^{\prime}+Y\right)$
4.15 (a) Cost is less -one less gate input.

4.19

4.20

4.21 For the minimal sum-of-products expression to equal the minimal product-of-sums expression, the corresponding maps must have the opposite don't-cares covered, so that the expressions yield the same value for the don'tcare input combinations.
(a) Both mininal sum-of-products expressions cover cell 15 ; they are equal. The minimal product-of-sums expression also covers cell 15 , so the expressions are not equal. The s-of-p and p-of-s expressions require the same number of gates, but the p-of-s requires one fewer input.
(b) Both mininal sum-of-products expressions cover cell 3 and 9 and not 15 ; they are equal. The minimal product-of-sums expression covers cell 15 , and not 3 or 9 , so the expressions are equal. The p-of-s expression requires fewer gates and inputs.
4.22 Consensus terms that must be added to cover the hazards are "circled" with rectangles.

Analyzing this circuit with the standard method for feedback sequential circuits (Section 5.5), we get the following excitation equation:

$$
\begin{aligned}
Q^{*} & =X^{\prime} \cdot\left((Y \cdot Q)^{\prime}+Q\right) \\
& =X^{\prime} \cdot\left(Y^{\prime}+Q^{\prime}+Q\right) \\
& =X^{\prime} \cdot 1=X^{\prime}
\end{aligned}
$$

Thus, Q* is a function of X alone, and is independent of the circuit's previous "state."

$$
\begin{aligned}
\mathrm{X} \cdot 1 & =\mathrm{X}\left(\mathrm{~T} 1^{\prime}\right) \\
\mathrm{X} \cdot\left(\mathrm{Y}+\mathrm{Y}^{\prime}\right) & =\mathrm{X}(\mathrm{~T} 5) \\
\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Y}^{\prime} & =\mathrm{X}(\mathrm{~T} 8)
\end{aligned}
$$

$$
\begin{aligned}
\left(X+Y^{\prime}\right) \cdot Y & =X \cdot Y+Y^{\prime} \cdot Y(T 8) \\
& =X \cdot Y+Y \cdot Y^{\prime}\left(T 6^{\prime}\right) \\
& =X \cdot Y+0\left(T 5^{\prime}\right) \\
& =X \cdot Y(T 1)
\end{aligned}
$$

4.35

$$
\begin{aligned}
\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \ldots \cdot \mathrm{X}_{n} \cdot \mathrm{X}_{n} & =\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \ldots \cdot\left(\mathrm{X}_{n} \cdot \mathrm{X}_{n}\right)\left(\mathrm{T}^{\prime}, \mathrm{T}^{\prime} \text { as required }\right) \\
& =\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \ldots \cdot \mathrm{X}_{n}\left(\mathrm{~T}^{\prime}\right) \\
\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{n}+\mathrm{X}_{n} & =\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\left(\mathrm{X}_{n}+\mathrm{X}_{n}\right)(\mathrm{T} 6, \mathrm{~T} 7 \text { as required }) \\
& =\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{n}\right)(\mathrm{T} 3)
\end{aligned}
$$

4.37 Figure 3-4(d) is more appropriate, since electrically a TTL NOR gate is just the wired-AND of inverters. 4.39
(a) True. If $A \cdot B=0$ then either $A=0$ or $B=0$. If $A+B=1$ then either $A=1$ or $B=1$. Therefore, $A, B=0,1$ or 1,0 , and $A=B^{\prime}$.

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{i}, \mathrm{X}_{i+1}, \ldots, \mathrm{X}_{n}\right)= & \mathrm{X}_{1}^{\prime}, \ldots, \mathrm{X}_{i}^{\prime} \cdot \mathrm{F}\left(0, \ldots, 0, \mathrm{X}_{i+1}, \ldots, \mathrm{X}_{n}\right) \\
& +\mathrm{X}_{1}^{\prime}, \ldots, \mathrm{X}_{i}^{\prime} \cdot \mathrm{F}\left(0, \ldots, 1, \mathrm{X}_{i+1}, \ldots, \mathrm{X}_{n}\right) \\
& \ldots \\
& +\underbrace{\mathrm{X}_{1}^{\prime}, \ldots, \mathrm{X}_{i}^{\prime}}_{2^{i} \text { minterms }} \cdot \mathrm{F}(\underbrace{1, \ldots, 1}_{2^{i} \text { combs }}, \mathrm{X}_{i+1}, \ldots, \mathrm{X}_{n})
\end{aligned}
$$

A dual theorem may be written based on maxterms.
4.46 Yes, 2-input NAND gates form a complete set of logic gates. We prove the result in the figure on the right by showing that these gates can be used to make 2-input AND gates, 2-input OR gates, and inverters, which form a complete set.
4.52 Take the dual, "multiply out," and take the dual again. The result is the same as "adding out."
4.58 (a) 16 ns . (c) 18 ns . (d) 10 ns .
4.61 To make it easier to follow, we'll take the dual, multiply out, and then take the dual again. Also, we'll simplify using theorems T^{\prime} and T^{\prime}, otherwise we'll get a nonminimal result for sure. For Figure 4-27:

$$
\begin{aligned}
F & =X \cdot Z+Y^{\prime} \cdot Z+X^{\prime} \cdot Y \cdot Z^{\prime} \\
F^{D} & =(X+Z) \cdot\left(Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Y+Z^{\prime}\right) \\
& =X \cdot Y^{\prime} \cdot Z^{\prime}+X \cdot Z \cdot Y+Z \cdot Y^{\prime} \cdot X^{\prime}+Z \cdot Y^{\prime} \cdot X^{\prime}+Z \cdot Z \cdot X^{\prime}+Z \cdot Z \cdot Y\left(T 8, T 5^{\prime}, T 2^{\prime}\right) \\
& =X \cdot Y^{\prime} \cdot Z^{\prime}+X \cdot Y \cdot Z+X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+X^{\prime} \cdot Z+Y \cdot Z\left(T 3^{\prime}, T 6^{\prime}\right) \\
F & =\left(X+Y^{\prime}+Z^{\prime}\right) \cdot(X+Y+Z) \cdot\left(X^{\prime}+Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Z\right) \cdot(Y+Z) \text { (not minimal) }
\end{aligned}
$$

For Figure 4-29:

$$
\begin{aligned}
F & =X \cdot Z^{\prime}+Y^{\prime} \\
F^{D} & =\left(X+Z^{\prime}\right) \cdot Y^{\prime} \\
& =X \cdot Y^{\prime}+Z^{\prime} \cdot Y^{\prime}(T 8) \\
& =X \cdot Y^{\prime}+Y^{\prime} \cdot Z^{\prime}\left(T 6^{\prime}\right) \\
F & =\left(X+Y^{\prime}\right) \cdot\left(Y^{\prime}+Z^{\prime}\right) \text { (minimal) }
\end{aligned}
$$

4.63

$F=W^{\prime} \cdot X \cdot Y+W^{\prime} \cdot Y \cdot Z^{\prime}+W \cdot Y^{\prime} \cdot Z+W \cdot X \cdot Z$

4-6 DIGITAL CIRCUITS

4.69 For part (d), note that it is easiest to work with the product-of-sums directly; rather than multiplying out, one simply enters the 0 s on the map.
(a)

(b)

4.70 Note that in these maps are drawn for the "true" function and we've written sum terms for the prime implicates (the dual of prime implicants) directly, instead of using the complement method suggested in Section 4.3.6.
(a)

(b)

4.72

4.73 Note that in these maps are drawn for the "true" function and we've written sum terms for the prime implicates (the dual of prime implicants) directly, instead of using the complement method suggested in Section 4.3.6.

4.74
(a)

$U, V=0,0$

$$
U, V=0,1
$$

$$
\begin{aligned}
F= & U^{\prime} \cdot V^{\prime} \cdot Y^{\prime} \cdot Z+U^{\prime} \cdot V \cdot X \cdot Z \\
& +X \cdot Y^{\prime} \cdot Z
\end{aligned}
$$

4.83 The name of the circuit comes from its output equation, $F=2 B$ OR NOT $2 B$.

EXERCISESOLUTIONS
5.4 READY' is an expression, with ' being a unary operator. Use a name like READY_L or /READY instead.
5.8 Both LOW-to-HIGH and HIGH-to-LOW transitions cause positive transitions on the outputs of three gates (every second gate), and negative transitions on the other three. Thus, the total delay in either case is

$$
\begin{aligned}
t_{p} & =3 t_{\mathrm{pLH}(\mathrm{LS} 00)}+3 t_{\mathrm{pHL}(\mathrm{LS} 00)} \\
& =3 \cdot 15+3 \cdot 15 \\
& =90 \mathrm{~ns}
\end{aligned}
$$

Since t_{pLH} and t_{pHL} for a 74LS00 are identical, the same result is obtained using a single worst-case delay of 15 ns .
5.12 The smallest typical delay through one 'LS86 for any set of conditions is 10 ns . Use the rule of thumb, "minimum equals one-fourth to one-third of typical," we estimate 3 ns as the minimum delay through one gate. Therefore, the minimum delay through the four gates is estimated at 12 ns .
The above estimate is conservative, as it does not take into account the actual transitions in the conditions shown. For a LOW-to-HIGH input transition, the four gates have typical delays of $13,10,10$, and 20 ns , a total of 53 ns , so the minimum is estimated at one-fourth of this or 13 ns . For a HIGH-to-LOW input transition, the four gates have typical delays of $20,12,12$, and 13 ns , a total of 57 ns , so the minimum is estimated at 14 ns .
5.15 A decoder with active-low outputs ought to be faster, considering that this decoder structure can be implemented directly with inverting gates (which are faster than noninverting) as shown in Figures 5-35 and 5-37.
5.16 The worst-case ' 138 output will have a transition in the same direction as the worst-case ' 139 output, so we use $\mathrm{t}_{\mathrm{pHL}}$ numbers for both, which is the worst combination. The delay through the ' 139 is 38 ns , and from the

5-2 DIGITAL CIRCUITS

active-low enable input of the ' 138 is 32 ns , for a total delay of 70 ns . Using "worst-case" numbers for the parts and ignoring the structure of the circuit, an overly pessimistic result of 79 ns is obtained.
We can also work the problem with 74 HCT parts. Worst-case delay through the ' 139 is 43 ns , and from the active-low enable input of the ' 138 is 42 ns , for a total delay of 85 ns . Ignoring the structure of the circuit, an overly pessimistic result of 88 ns is obtained.
We can also work the problem with 74 FCT parts. Worst-case delay through the ' 139 is 9 ns , and from the active-low enable input of the ' 138 is 8 ns , for a total delay of 17 ns . Ignoring the structure of the circuit, a slightly pessimistic result of 18 ns is obtained.
Finally, we can work the problem with 74AHCT parts. Worst-case delay through the ' 139 is 10.5 ns , and from the active-low enable input of the ' 138 is 12 ns , for a total delay of 22.5 ns . Ignoring the structure of the circuit, a slightly pessimistic result of 23.5 ns is obtained.
5.19

5.21 Both halves of the ' 139 are enabled simultaneously when EN_L is asserted. Therefore, two three-state drivers will be enabled to drive SDATA at the same time. Perhaps the designer forgot to put an extra inverter on the signal going to 1 G or 2 G , which would ensure that exactly one source drives SDATA at all times.
5.22 The total delay is the sum of the decoding delay through the 74LS139, enabling delay of a 74LS151, and delay through a 74LS20: $38+30+15=83 \mathrm{~ns}$.
5.25 The worst-case delay is the sum of the delays through an 'LS280, select-to-output through an 'LS138, and through an 'LS86: $50+41+30=121 \mathrm{~ns}$.
5.30 The worst-case delay is the sum of four numbers:

- In U1, the worst-case delay from any input to C4 (22 ns).
- In U2, the worst-case delay from C0 to C4 (22 ns).
- In U3, the worst-case delay from C0 to C4 (22 ns).
- In U4, the worst-case delay from C0 to any sum output (24 ns).

Thus, the total worst-case delay is 90 ns .
5.35 With the stated input combination, Y5_L is LOW and the other outputs are HIGH. We have the following cases:
(a) Negating G2A_L or G2B_L causes Y5_L to go HIGH within 18 ns .
(b) Negating G1 causes Y5_L to go HIGH within 26 ns .
(c) Changing A or C causes Y5_L to go HIGH within 27 ns (the change propagates through 3 levels of logic internally), and causes Y 4 _L or $\mathrm{Y} 1 _\mathrm{L}$ respectively to go LOW within 41 ns (2 levels).
(d) Changing B causes Y5_L to go HIGH within 20 ns (2 levels), and causes Y7_L to go LOW within 39 ns (3 levels). The delays in the 'LS138 are very strange-the worst-case t_{pHL} for 3 levels is shorter than for 2 levels!

5.46 The inputs are active low and the outputs are active high in this design.

5-4 DIGITAL CIRCUITS
5.47

5.54 An internal logic diagram for the multiplexer is shown below.

5-6 DIGITAL CIRCUITS

A truth table and pin assignment for the mux are shown below.

Inputs			Outputs				
S 1	S 0	1 Y	2 Y	3 Y	4 Y	5 Y	
0	0	1D0	2D0	3D0	4D0	5D0	
0	1	1D1	2D1	3D1	4D1	5D1	
1	0	1D2	2D2	3D2	4D2	5D2	
1	1	0	0	0	0	0	

	74LS998		
13	S0		
14	S1		
23	1D0		
1	1D1		
2	1D2	1 Y	22
3	2D0		
4	2D1	2 Y	21
5	2D2		
6	3D0	$3 Y$	20
7	3D1		
8	3D2	4Y	19
9	4D0		
10	4D1	5 Y	15
11	4D2		
18	5D0		
17	5D1		
16	5D2		

The mux can be built using a single PLD, a PAL20L8 or GAL20V8; the pin assignment shown above is based on the PLD. The corresponding ABEL program, MUX3BY5. ABL, is shown below.

```
module Mux_3x5
title '5-Bit, 3-Input Multiplexer
J. Wakerly, Marquette University'
MUX3BY5 device 'P20L8';
" Input pins
I1D0, I1D1, I1D2 pin 23, 1, 2;
I2D0, I2D1, I2D2
I3D0, I3D1, I3D2
I4D0, I4D1, I4D2
I5D0, I5D1, I5D2
S0, S1
" Output pins
Y1, Y2, Y3, Y4, Y5 pin 22, 21, 20, 19, 15;
" Set definitions
BUS0 = [I1D0,I2D0,I3D0,I4D0,I5D0];
BUS1 = [I1D1,I2D1,I3D1,I4D1,I5D1];
BUS2 = [I1D2,I2D2,I3D2,I4D2,I5D2];
OUT = [Y1, Y2, Y3, Y4, Y5 ];
" Constants
SELO = ([S1,S0]==[0,0]);
SEL1 = ([S1,S0]==[0,1]);
SEL2 = ([S1,S0]== [1,0]);
IDLE = ([S1,S0]==[1,1]);
equations
OUT = SELO & BUS0 # SEL1 & BUS1 # SEL2 & BUS2 # IDLE & 0;
end Mux_3x5
```

5.55 This is the actual circuit of a MUX21H 2-input multiplexer cell in LSI Logic's LCA 10000 series of CMOS gate arrays. When S is 0 , the output equals A; when S is 1 , the output equals B.
5.60

5.67 The ' 08 has the same pinout as the ' 00 , but its outputs are the opposite polarity. The change in level at pin 3 of U 1 is equivalent to a change at pin 4 of U 2 (the input of anXOR tree), which is equivalent in turn to a change at pin 6 of U2 (the parity-generator output). Thus, the circuit simply generated and checked odd parity instead of even.
The change in level at pin 6 of U1 changed the active level of the ERROR signal.
5.69 This problem is answered in Section 5.9.3 of the text, which makes it a silly question.
5.75

5.79 The function has 65 inputs, and the worst 65 -input function (a 65 -input parity circuit) has 2^{65-1} terms in the minimal sum-of-products expression. Our answer can't be any worse than this, but we can do better.
The expression for c_{1} has 3 product terms: $c_{1}=c_{0} \cdot x_{0}+c_{0} \cdot y_{0}+x_{0} \cdot y_{0}$
The expression for c_{2} is $\mathrm{c}_{2}=\mathrm{c}_{1} \cdot \mathrm{x}_{1}+\mathrm{c}_{1} \cdot \mathrm{y}_{1}+\mathrm{x}_{1} \cdot \mathrm{y}_{1}$
If we substitute our previous expression for c 1 in the equation above and "multiply out," we get a result with $3+3+1=7$ product terms. Let us assume that no further reduction is possible.
Continuing in this way, we would find that the expression for c_{3} has $7+7+1=15$ product terms and, in general, the expression for c_{i} has $2^{i+1}-1$ product terms.
Thus, the number of terms in a sum-of-products expression for c_{32} is no more than $2^{33}-1$, fewer if minimization is possible.
5.80

5.82

5.91

5.93 The obvious solution is to use a 74 FCT 682 , which has a maximum delay of 11 ns to its $\overline{\mathrm{PEQQ}}$ output. However, there are faster parts in Table 5-3. In particular, the 74 FCT151 has a delay of only 9 ns from any select input to Y or $\overline{\mathrm{Y}}$. To take advantage of this, we use a ' 138 to decode the SLOT inputs statically and apply the resulting eight signals to the data inputs of the ' 151 . By applying GRANT[2-0] to the select inputs of the ' 151 , we obtain the MATCH_L output (as well as an active-high MATCH, if we need it) in only 9 ns!

EXERCISESOLUTIONS
7.2

7.3 The latch oscillates if S and R are negated simultaneously. Many simulator programs will exhibit this same behavior when confronted with such input waveforms.

7.5

7.8 Just tie the J and $\overline{\mathrm{K}}$ inputs together and use as the D input.
7.9 Excitation and output equations:

$$
\begin{aligned}
\mathrm{D} 1 & =\mathrm{Q} 1^{\prime}+\mathrm{Q} 2 \\
\mathrm{D} 2 & =\mathrm{Q} 2^{\prime} \cdot \mathrm{X} \\
\mathrm{Z} & =\mathrm{Q} 1+\mathrm{Q} 2^{\prime}
\end{aligned}
$$

Excitation/transition table; state/output table:

	EN	
Q1 Q2	0	1
00	10	11
01	10	10
10	00	01
11	10	10
	Q1* * Q2 *	

	EN		
	S	0	1
	Z		
A	C	D	1
B	C	C	0
C	A	B	1
D	C	C	1
	S^{*}		

7.15 Excitation equations:

$$
\begin{aligned}
& \mathrm{D} 2=(\mathrm{Q} 1 \oplus \mathrm{Q} 0) \oplus\left(\mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 2^{\prime}\right) \\
& \mathrm{D} 1=\mathrm{Q} 2 \\
& \mathrm{D} 0=\mathrm{Q} 1
\end{aligned}
$$

Excitation/transition table; state table:

Q2 Q1 Q0	Q2 * Q1 * Q0* *
000	100
001	000
010	101
011	001
100	010
101	110
110	111
111	011

S	S^{*}
A	E
B	A
C	F
D	B
E	C
F	G
G	H
H	D

7.18 Excitation and output equations:

$$
\begin{aligned}
\mathrm{J} 0 & =\mathrm{K} 0=\mathrm{EN} \\
\mathrm{~J} 1 & =\mathrm{K} 1=\mathrm{Q} 0 \cdot \mathrm{EN} \\
\mathrm{MAX} & =\mathrm{EN} \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0
\end{aligned}
$$

Note that the characteristic equation for a $J-K$ flip-flop is $Q^{*}=J \cdot Q^{\prime}+K^{\prime} \cdot Q$. Thus, we obtain the following transition equations:

$$
\begin{aligned}
& \mathrm{Q} 0^{*}=\mathrm{EN}^{\prime} \cdot \mathrm{Q} 0+\mathrm{EN} \cdot \mathrm{Q} 0^{\prime} \\
& \mathrm{Q} 1^{*}=\mathrm{EN} \cdot \mathrm{Q} 1+\mathrm{EN} \cdot \mathrm{Q} 0 \cdot \mathrm{Q} 1^{\prime}+\mathrm{EN} \cdot \mathrm{Q} 0^{\prime} \cdot \mathrm{Q} 1
\end{aligned}
$$

Transition/output table; state/output table:

	EN	
Q1 Q2	0	1
00	00,0	01,0
01	01,0	10,0
10	10,0	11,0
11	11,0	00,1
	Q1 * Q2 $^{*}, \mathrm{MAX}$	

	EN	
S	0	1
A	$\mathrm{A}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{B}, 0$	$\mathrm{C}, 0$
C	$\mathrm{C}, 0$	$\mathrm{D}, 0$
D	$\mathrm{D}, 0$	$\mathrm{~A}, 1$
	$\mathrm{~S}^{*}, \mathrm{MAX}$	

State diagram:

Timing diagram:

7.20 This can be done algebraically. If all of the input combinations are covered, the logical sum of the expressions on all the transitions leaving a state must be 1 . If the sum is not 1 , it is 0 for all input combinations that are uncovered. For double-covered input combinations, we look at all possible pairs of transitions leaving a state. The product of a pair of transition equations is 1 for any double-covered input combinations.
(a) State $D, Y=0$ is uncovered.
(b) State $A,\left(X+Z^{\prime}\right)=0$ is uncovered. State $B, W=1$ is double-covered; $(W+X)=0$ is uncovered. State C, $(W+X+Y+Z)=0$ is uncovered; $(W \cdot X+W \cdot Y+Z \cdot Y+Z \cdot X)=1$ is double covered. State $D,\left(X \cdot Y+\cdot X^{\prime} \cdot Z+W \cdot Z\right)=0$ is uncovered; $\left(W \cdot X^{\prime} \cdot Z+W \cdot X \cdot Y \cdot Z\right)=1$ is double-covered;
7.21 Table $9-4$ on page 804 shows an output-coded state assignment. Here is a corresponding transition list:

S	L3Z	L2Z	L1Z	R1Z	R2Z	R3Z	Transition expression	S*	L3Z*	L2Z*	L12*	R1Z*	R2Z*	R3Z*
IDLE	0	0	0	0	0	0	(LEFT + RIGHT + HAZ)'	IDLE	0	0	0	0	0	0
IDLE	0	0	0	0	0	0	LEFT • HAZ \cdot RIGHT ${ }^{\prime}$	L1	0	0	1	0	0	0
IDLE	0	0	0	0	0	0	HAZ + LEFT • RIGHT	LR3	1	1	1	1	1	1
IDLE	0	0	0	0	0	0	RIGHT • HAZ' \cdot LEFT ${ }^{\prime}$	R1	0	0	0	1	0	0
L1	0	0	1	0	0	0	HAZ'	L2	0	1	1	0	0	0
L1	0	0	1	0	0	0	HAZ	LR3	1	1	1	1	1	1
L2	0	1	1	0	0	0	HAZ'	L3	1	1	1	0	0	0
L2	0	1	1	0	0	0	HAZ	LR3	1	1	1	1	1	1
L3	1	1	1	0	0	0	1	IDLE	0	0	0	0	0	0
R1	0	0	0	1	0	0	HAZ'	R2	0	0	0	1	1	0
R1	0	0	0	1	0	0	HAZ	LR3	1	1	1	1	1	1
R2	0	0	0	1	1	0	HAZ'	R3	0	0	0	1	1	1
R2	0	0	0	1	1	0	HAZ	LR3	1	1	1	1	1	1
R3	0	0	0	1	1	1	1	IDLE	0	0	0	0	0	0
LR3	1	1	1	1	1	1	1	IDLE	0	0	0	0	0	0

The excitation equations and circuit diagram follow directly from this transition list.
7.25 The minimum setup time is the clock period times the duty cycle. That is, the minimum setup time is the time that the clock is 1.
7.27 As shown in Section 7.9.1, the excitation equation for the latch of Figure 7-72 is $Y^{*}=C \cdot D+C^{\prime} \cdot Y+D \cdot Y$ Below, we analyze Figure X7.27 in the same way:

The feedback equation is

$$
\begin{aligned}
Y^{*} & =C \cdot D+\left(\left((C \cdot D)^{\prime} \cdot C\right)+Y^{\prime}\right)^{\prime} \\
& =(C \cdot D)+\left((C \cdot D)^{\prime} \cdot C\right)^{\prime} \cdot Y \\
& =C \cdot D+\left((C \cdot D)+C^{\prime}\right) \cdot Y \\
& =C \cdot D+\left(D+C^{\prime}\right) \cdot Y \\
& =C \cdot D+D \cdot Y+C^{\prime} \cdot Y
\end{aligned}
$$

The feedback equations are the same, and so the circuits have identical steady-state behavior.
The circuit in Figure X 7.27 is better in two ways. It uses one less gate, and it has one less load on the D input.
7.29 The AND gate in the original circuit is replaced with a NAND gate. As a result, the second flip-flop stores the opposite of the value stored in the original circuit; to compensate, swap connections to its Q and $Q N$ outputs.

The OR gates in the original circuit are also replaced with NAND gates. As a result, each input must be connected to a signal of the opposite polarity as before, that is, to the complementary flip-flop output. In the case of connections to the second flip-flop, we swapped outputs twice, so the connections remain the same.
The final circuit below uses three 2-input NAND gates.

7.45 A transition table corresponding to the state table is shown below:

	A B				
Q2 Q1 Q0	00	01	11	10	Z
000	001	001	010	010	0
001	011	011	010	010	0
010	001	001	100	100	0
011	011	011	110	010	1
100	001	101	100	100	1
101	011	011	110	010	1
110	001	101	100	100	1
	Q2* Q1* 2 Q0*				

This table leads to the following Karnaugh maps for the excitation logic, assuming a "minimal cost" treatment of unused states.

The resulting excitation equations are

$$
\begin{aligned}
& D 0=A^{\prime} \\
& D 1=Q 1^{\prime} \cdot Q 2^{\prime} \cdot A+Q 0 \\
& D 2=Q 2 \cdot A \cdot B+Q 0^{\prime} \cdot Q 2 \cdot A+Q 0^{\prime} \cdot Q 1 \cdot A+Q 1 \cdot A \cdot B+Q 0^{\prime} \cdot Q 1 \cdot B
\end{aligned}
$$

Ignoring inverters, a circuit realization with the new equations requires one 2 -input gate, six 3 -input gates, and one 5 -input gate. This is more expensive than Figure 7-54, by four gates.
7.49 The new state assignment yields the following transition/excitation table and Karnaugh maps:

	XY				
Q1 Q0	00	01	11	10	Z
00	00	01	11	01	1
01	01	11	10	11	0
11	11	10	00	10	0
10	10	00	01	00	0
	${\text { Q2* }{ }^{*} \text { Q1* or D1 D2 }}$				

This yields the following excitation equations:

$$
\begin{aligned}
& \mathrm{D} 1=\mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 2 \cdot X+Q 1^{\prime} \cdot \mathrm{Q} 2 \cdot Y+Q 1^{\prime} \cdot X \cdot Y+Q 1 \cdot Q 2^{\prime} \cdot X^{\prime}+Q 1 \cdot Q 2^{\prime} \cdot Y^{\prime}+Q 1 \cdot X^{\prime} \cdot Y^{\prime} \\
& D 2=Q 2 \cdot X \cdot Y+Q 2^{\prime} \cdot X \cdot Y^{\prime}+Q 2^{\prime} \cdot X^{\prime} \cdot Y+Q 2 \cdot X^{\prime} \cdot Y^{\prime}
\end{aligned}
$$

Compared with the results of original state assigment, these equations require two more 3-input AND gates, plus a 6-input OR gate inplace of a 4-input one. However, if we are not restricted to a sum-of-products realization, using the fact that $\mathrm{D} 2=\mathrm{Q} 2 \oplus \mathrm{X} \oplus \mathrm{Y}$ might make this realization less expensive when discrete gates are used.
7.57 Here is the transition list:

S	Q2	Q1	Q0	Transition expression	S* *	Q2* *	Q1* *	Q0* *
IDLE	0	0	0	(LEFT+RIGHT+HAZ)	IDLE	0	0	0
IDLE	0	0	0	LEFT	L1	0	0	1
IDLE	0	0	0	HAZ	LR3	1	0	0
IDLE	0	0	0	RIGHT	R1	1	0	1
L1	0	0	1	1	L2	0	1	1
L2	0	1	1	1	L3	0	1	0
L3	0	1	0	1	IDLE	0	0	0
R1	1	0	1	1	R2	1	1	1
R2	1	1	1	1	R3	1	1	0
R3	1	1	0	1	IDLE	0	0	0
LR3	1	0	0	1	IDLE	0	0	0

The transition/excitation and output equations below follow directly from the transition list.

$$
\begin{aligned}
& \mathrm{D} 2=\mathrm{Q} 2^{*}=\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0^{\prime} \cdot \mathrm{HAZ} \\
& + \text { Q2' }^{\prime} \cdot \text { Q }^{\prime} \cdot \text { Q0' }^{\prime} \cdot \mathrm{RIGHT} \\
& + \text { Q2.Q1'.Q0 } \\
& + \text { Q2.Q1•Q0 } \\
& =\mathrm{Q}^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0^{\prime} \cdot(\mathrm{HAZ}+\mathrm{RIGHT})+\mathrm{Q} 2 \cdot \mathrm{Q} 0 \\
& \mathrm{D} 1=\mathrm{Q} 1^{*}=\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0 \\
& \text { + Q2'.Q1•Q0 } \\
& +Q 2 \cdot Q 1 \text { 'Q0 } \\
& \text { +Q2•Q1•Q0 } \\
& =\text { Q0 } \\
& \mathrm{DO}=\mathrm{Q} 0^{*}=\mathrm{Q} 2^{\prime} \cdot \mathrm{Q} 1^{\prime} \cdot \mathrm{Q} 0^{\prime} \cdot \mathrm{LEFT} \\
& + \text { Q }^{\prime} \cdot Q 1^{\prime} \cdot \text { Q0' }^{\prime} \cdot \text { RIGHT } \\
& + \text { Q2 }^{\prime} \cdot Q 1^{\prime} \cdot Q 0 \\
& \text { +Q2•Q1'Q0 } \\
& =Q 2^{\prime} \cdot \mathrm{Q}^{\prime} \cdot \mathrm{Q} 0^{\prime} \cdot(\mathrm{LEFT}+\mathrm{RIGHT})+\mathrm{Q1}^{\prime} \cdot \mathrm{Q0}
\end{aligned}
$$

Starting from the IDLE state, the following transitions may be observed:

S	Q2	Q1	Q0	LEFT	RIGHT	HAZ	Q2*	Q1*	Q0*	S*
IDLE	0	0	0	1	0	1	1	0	1	R1
IDLE	0	0	0	0	1	1	1	0	1	R1
IDLE	0	0	0	1	1	0	1	0	1	R1
IDLE	0	0	0	1	1	1	1	0	1	R1

For each input combination, the machine goes to the R1 state, because R1's encoding is the logical OR of the encodings of the two or three next states that are specified by the ambiguous state diagram.

The behavior aboveis not so good and is a result of synthesis choices-state encoding and logic synthesis method. If a different state encoding were used for R1, or if a different synthesis method were used (e.g., prod-uct-of-s-terms), then the results could be different. For example, starting with the transition list given earlier, we can obtain the following set of transition equations using the product-of-s-terms method:

$$
\begin{aligned}
& \mathrm{D} 2=\mathrm{Q} 2^{*}=(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{LEFT}+\mathrm{RIGHT}+\mathrm{HAZ}) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{LEFT}^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0^{\prime}\right) \\
& \cdot\left(Q 2+Q 1^{\prime}+Q 0^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1^{\prime}+\mathrm{Q} 0\right) \\
& \cdot\left(Q 2^{\prime}+Q 1^{\prime}+Q 0\right) \\
& \cdot\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 1+\mathrm{Q} 0\right) \\
& =(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{RIGHT}+\mathrm{HAZ}) \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{LEFT}^{\prime}\right) \cdot\left(\mathrm{Q} 2+\mathrm{Q} 0^{\prime}\right) \cdot\left(\mathrm{Q} 1^{\prime}+\mathrm{Q} 0\right) \cdot\left(\mathrm{Q}^{\prime}+\mathrm{Q} 0\right) \\
& \mathrm{D} 1=\mathrm{Q} 1^{*}=(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{LEFT}+\mathrm{RIGHT}+\mathrm{HAZ}) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{LEFT}^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{HAZ}{ }^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{RIGHT}^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1^{\prime}+\mathrm{Q} 0\right) \\
& \cdot\left(Q 2^{\prime}+Q 1^{\prime}+Q 0\right) \\
& \cdot\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 1+\mathrm{Q} 0\right) \\
& =(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0) \cdot\left(\mathrm{Q} 1^{\prime}+\mathrm{Q} 0\right) \cdot\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 0\right) \\
& \mathrm{D} 0=\mathrm{Q} 0^{*}=(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{LEFT}+\mathrm{RIGHT}+\mathrm{HAZ}) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1+\mathrm{Q} 0+\mathrm{HAZ}{ }^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1^{\prime}+\mathrm{Q} 0^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2+\mathrm{Q} 1^{\prime}+\mathrm{Q} 0\right) \\
& \cdot\left(Q 2^{\prime}+Q 1^{\prime}+Q 0^{\prime}\right) \\
& \cdot\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 1^{\prime}+\mathrm{Q} 0\right) \\
& \cdot\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 1+\mathrm{Q} 0\right) \\
& =(\mathrm{Q} 2+\mathrm{Q} 0+\mathrm{LEFT}+\mathrm{RIGHT}) \cdot\left(\mathrm{Q} 2+\mathrm{Q} 0+\mathrm{HAZ}^{\prime}\right) \cdot\left(\mathrm{Q} 1^{\prime}\right) \cdot\left(\mathrm{Q} 2^{\prime}+\mathrm{Q} 0\right)
\end{aligned}
$$

These equations yield the following transitions:

S	Q2	Q1	Q0	LEFT	RIGHT	HAZ	Q2* *	Q1*	Q0*	S*
IDLE	0	0	0	0	0	0	0	0	0	IDLE
IDLE	0	0	0	0	1	1	1	0	0	LR3
IDLE	0	0	0	1	1	0	0	0	1	L1
IDLE	0	0	0	1	1	1	0	0	0	IDLE

This is obviously different and still not particularly good behavior.
7.58 Let $E(S B), E(S C)$, and $E(S D)$ be the binary encodings of states $S B$, $S C$, and $S D$ respectively. Then $E(S D)=E(S B)+E(S C)$, the bit-by-bit logical $O R$ of $E(S B)$ and $E(S C)$. This is true because the synthesis method uses the logical OR of the next values for each state variable and, by extension, the logical OR of the encoded states.
7.68 As far as I know, I was the first person to propose BUT-flops, and Glenn Trewitt was the first person to analyze them, in 1982. To analyze, we break the feedback loops as shown in the figure to the right.

The excitation and output equations are

$$
\begin{aligned}
\mathrm{Y} 1 & =\left[(\mathrm{X} 1 \cdot \mathrm{Y} 1) \cdot(\mathrm{X} 2 \cdot \mathrm{Y} 2)^{\prime}\right]^{\prime} \\
& =\mathrm{X} 1^{\prime}+\mathrm{Y} 1^{\prime}+\mathrm{X} 2 \cdot \mathrm{Y} 2 \\
\mathrm{Y} 2 & =\left[(\mathrm{X} 2 \cdot \mathrm{Y} 2) \cdot(\mathrm{X} 1 \cdot \mathrm{Y} 1)^{\prime}\right]^{\prime} \\
& =X 2^{\prime}+\mathrm{Y} 2^{\prime}+\mathrm{X} 1 \cdot \mathrm{Y} 1 \\
\mathrm{Q} 1 & =\mathrm{Y} 1 \\
\mathrm{Q} 2 & =\mathrm{Y} 2
\end{aligned}
$$

The corresponding transition/state table is

	X 1 X 2			
Y1 Y2	00	01	11	10
00	11	11	11	11
01	11	10	10	11
11	11	10	11	01
10	11	11	01	01
	$\mathrm{Y} 1^{*} \mathrm{Y} 2^{*}$			

The two stable total states are circled. Notice that state 00 is unreachable.
When X1 X2 $=00$ or 11 , the circuit generally goes to stable state 11 , with $\mathrm{Q} 1 \mathrm{Q} 2=11$. The apparent oscillation between states 01 and 10 when X1 X2 = 11 may not occur in practice, because it contains a critical race that tends to force the circuit into stable state 11.
When X1 X2 = 01 or 10 , the Q output corresponding to the HIGH input will oscillate, while the other output remains HIGH .

Whether this circuit is useful is a matter of opinion.
7.71 When $X=1$, the circuit was supposed to "count" through its eight states in Gray-code order. When $X=0$, it remains in the current state. If this were the case, I suppose it could be used as a 3-bit random number generator. However, I messed up on the logic diagram and the circuit actually does something quite different and completely useless, compared to what I intended when I wrote the problem. Someday I'll fix this problem. Also, metastability may occur when X is changed from 1 to 0 .
7.79 Figure X5.59 requires two "hops" for each input change. Figure 7-66 is faster, requiring only one hop for each input change. On the other hand, Figure 7-66 cannot be generalized for $n>2$.
7.90 Either this exercise is a joke, or a correct answer is much too dangerous to publish. Nevertheless, Earl Levine offers two possible answers:
(Stable output) Was the last answer to this question "yes"?
(Oscillating output) Was the last answer to this question "no"?

EXERCISESOLUTIONS

8.1 In the first three printings, change "RAMBANKO" to "RAMBANK1" in the third line of the exercise. The results are the same. The new expression describes exactly the input combinations in which the 8 high-order bits of ABUS are 00000001_{2}, the same as the original expression using don't-cares.
8.2 The 16 -series devices have 64×32 or 2048 fuses (see Figure 10-2). The 20 -series devices have 64×40 or 2560 fuses.
8.3 There are $64 \times 32=2048$ fuses in the AND array (see Figure 10-4). Each of the eight macrocells has one fuse to control the output polarity and one fuse to select registered vs. combinational configuration in the 16V8R, or to assert the output-enable in the 16 V 8 S . There are also two global fuses to select the overall configuration $(16 \mathrm{~V} 8 \mathrm{C}, 16 \mathrm{~V} 8 \mathrm{R}$, or 16 V 8 S$)$. The total number of fuses is therefore $2048+16+2=2066$.

A real 16 V 8 (depending on the manufacturer) has at least 64 additional fuses to disable individual product terms, 64 user-programmable fuses that do nothing but store a user code, and a security fuse. (Once the security fuse is programmed, the rest of the fuse pattern can no longer be read.)
8.5 The $f_{\text {max }}$ column below gives the answers in MHz.

Part numbers	Suffix	t_{PD}	t_{CO}	t_{CF}	t_{SU}	t_{H}	f_{maxE}	f_{maxI}
PAL16L8, PAL16Rx, PAL20L8, PAL20Rx	-5	5	4	-	4.5	0	117.7	117.7
PAL16L8, PAL16Rx, PAL20L8, PAL20Rx	-7	7.5	6.5	-	7	0	74.1	74.1
PAL16L8, PAL16Rx, PAL20L8, PAL20Rx	-10	10	8	-	10	0	55.6	55.6
GAL22V10	-25	25	15	13	15	0	33.3	35.7

8.6 The $f_{\text {maxI }}$ column above gives the answers in MHz .
8.7

```
module Eight_Bit_Reg
title '8-bit Edge-Triggered Register'
Z74X374 device 'P16V8R';
" Input pins
CLK, !OE pin 1, 11;
D1, D2, D3, D4, D5, D6, D7, D8 pin 2, 3, 4, 5, 6, 7, 8, 9;
" Output pins
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 pin 19, 18, 17, 16, 15, 14, 13, 12;
" Set definitions
D = [D1,D2,D3,D4,D5,D6,D7,D8];
Q = [Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8] ;
equations
Q := D;
end Eight_Bit_Reg
```

8.10 If EN or CLK is 0 , the output will be stable. If both are 1 , the results are unpredictable, since they depend on circuit timing. It is certain that the circuit's output will be unstable as long as this condition is true.
8.11 The counter is modified to return to a count of 0 when count 9 is reached.

```
module Z74x162
title '4-bit Decade Counter'
"Z74X162 device 'P16V8R';
" Input pins
CLK, !OE pin 1, 11;
A, B, C, D pin 2, 3, 4, 5;
!LD, !CLR, ENP, ENT pin 6, 7, 8, 9;
" Output pins
QA, QB, QC, QD pin 19, 18, 17, 16 istype 'reg';
RCO
" Set definitions
INPUT = [ D, C, B, A ];
COUNT = [QD, QC, QB, QA ];
equations
COUNT.CLK = CLK;
COUNT := !CLR & ( LD & INPUT
    # !LD & (ENT & ENP) & (COUNT < 9) & (COUNT + 1)
    # !LD & (ENT & ENP) & (COUNT == 9) & 0
    # !LD & !(ENT & ENP) & COUNT);
RCO = (COUNT == 9) & ENT;
end Z74x162
```

8.13 The counting direction is controlled by QD : count up when $\mathrm{QD}=1$, count down when $\mathrm{QD}=0$. A load occurs when the counter is in the terminal state, 1111 when counting up, 0000 when counting down. The MSB is complemented during a load and the other bits are unchanged.
Let us assume that the counter is initially in one of the states $0000-0111$. Then the counter counts down $(Q D=0)$. Upon reaching state 0000 , it loads 1000 and subsequently counts up $(Q D=1)$. Upon reaching state 1111, the counter loads 0111 , and subsequently counts down, repeating the cycle.

If the counter is initially in one of the states $1000-1111$, the same cyclic behavior is observed. The counting sequence has a period of 16 and is, in decimal,

$$
8,9,10,11,12,13,14,15,7,6,5,4,3,2,1,0,8,9, \ldots
$$

If only the three LSBs are observed, the sequence is

$$
0,1,2,3,4,5,6,7,7,6,5,4,3,2,1,0,0,1, \ldots
$$

8.14 The only difference between a ' 163 and a ' 161 is that the CLR_L input of ' 161 is asynchronous. Thus, the counter will go from state 1010 to state 0000 immediately, before the next clock tick, and go from state 0000 to state 0001 at the clock tick. Observing the state just before each clock tick, it is therefore a modulo-10 counter, with the counting sequence $0,1, \ldots, 9,0,1, \ldots$.
Note that this type of operation is not recommended, because the width of the CLR_L pulse is not well controlled. That is, the NAND gate will negate the CLR_L pulse as soon as either one of its inputs goes to 0 . If, say, the counter's QB output clears quickly, and its QD output clears slowly, it is possible for CLR_L to be asserted long enough to clear QB but not QD, resulting in an unexpected next state of 1000 , or possibly metastability of the QD output.
8.17 The path from the Q1 counter output (B decoder input) to the Y2_L output has 10 ns more delay than the Q2 and Q0 (C and A) paths. Let us examine the possible Y2_L glitches in Figure 8-43 with this in mind:
$3 \rightarrow 4(011 \rightarrow 100)$ Because of the delay in the Q1 path, this transition will actually look like $011 \rightarrow 110 \rightarrow 100$. The Y6_L output will have a 10-ns glitch, but Y2_L will not.
$7 \rightarrow 0(111 \rightarrow 000)$ Because of the delay in the Q1 path, this transition will actually look like $111 \rightarrow 010 \rightarrow 000$. The Y2_L output will have a $10-\mathrm{ns}$ glitch, but the others will not.
8.19 The delay calculation is different, depending on the starting state.

In the INIT state, U7 and U8 take 21 ns to propagate the CLEAR signal to the outputs. Then U6 requires 20 ns setup time on its D inputs while U3 requires 20 ns setup time on its RIN input. This implies a minimum clock period of 41 ns , assuming zero delay from the control unit.
In states M1-M8, the minimum clock period depends on the delay of the combinational logic in the control unit that asserts SELSUM when MPY0 is asserted. However, the most obvious way to do this is to connect MPYO directly to SELSUM, creating a delay of 0 ns . This assumption is made below. Also, it is assumed that MPYO is 1 to find the worst case. The figure on the next page shows the worst-case path, in heavy lines, to be 106 ns . Since we would like to use the same clock for all states, the minimum clock period is 106 ns .

8.20 The synchronizer fails if META has not settled by the beginning of the setup-time window for FF2, which is 5 ns before the clock edge. Since the clock period is 40 ns , the available metastability resolution time is 35 ns . The MTBF formula is

$$
\operatorname{MTBF}\left(t_{r}\right)=\frac{\exp \left(t_{r} / \tau\right)}{T_{0} \cdot f \cdot a}
$$

Substituting the proper values of τ and T_{0} for the 'F74, and of f and a for the problem, we calculate

$$
\operatorname{MTBF}(35 \mathrm{~ns})=\frac{\exp (35 / 0.4)}{2.0 \cdot 10^{-4} \cdot 10^{6} \cdot 10^{6}} \approx 2 \cdot 10^{28_{\mathrm{S}}}
$$

8.22 Refer to the sample data sheet on page 169 of the text: "Not more than one output should be shorted at a time; duration of short-circuit should not exceed one second." In the switch debounce circuit, the short lasts only for a few tens of nanoseconds, so it's OK.
8.23 CMOS outputs can "latch up" under certain conditions. According to the Motorola High-Speed CMOS Logic Data book (1988 edition, pp. 4-10), a 74 HCT output can latch up if a voltage outside the range $-0.5 \leq V_{\text {out }} \leq V_{\mathrm{CC}}+0.5 \mathrm{~V}$ is forced on the output by an external source. In a switch debounce circuit using 74 HCT 04 s , the switch connection to ground is an external source, but the voltage $(0 \mathrm{~V})$ is within the acceptable range and should not be a problem.
Another potential problem is excessive short-circuit current, but again the data book indicates that shorting the output briefly is not a problem, as long as "the maximum package power dissipation is not violated" (i.e., the short is not maintained for a long time).
Similar considerations apply to 74AC and 74ACT devices, but in the balance, such devices are not recommended in the switch-debounce application, as we'll explain. On one hand, typical 74AC/74ACT devices are even less susceptible to latch-up than 74 HCT devices. (For example, see the Motorola FACT Data book, 1988 edition, pp. 2-9.) On the other hand, 74AC/74ACT's high performance may create noise problems for other devices in a system. In particular, when the $74 \mathrm{AC} / 74 \mathrm{ACT}$ HIGH output is shorted to ground, it may momentarily drag the local 5 V power-supply rail down with it, especially if the decoupling capacitors are small, far away, or missing. This will in turn cause incorrect operation of the other, nearby logic devices.
8.25 TTL inputs require significant current, especially in the LOW state. The bus holder cannot supply enough current unless the series resistor is made much smaller, which then creates a significant load on the bus.
8.26

```
library IEEE;
use IEEE.std_logic_1164.all;
--
-- Exercise 8-26
-- This code combines the address latch and
-- and the decoder and its latch
entity latch_decode is
port (
    abus : in std_logic_vector ( }31\mathrm{ downto 0);
    avalid : in std_logic;
    la : out std_logic_vector ( 19 downto 0);
    romcs, ramcs0, ramcs1, ramcs2 : out std_logic
);
end entity latch_decode;
architecture behave of latch_decode is
begin
process (avalid, abus)
begin
if (avalid = '1') then
    la <= abus (19 downto 0);
end if;
end process;
process (abus, avalid)
variable rom, ram1, ram2, ram0 : std_logic_vector (11 downto 0);
begin
rom := "111111111111";
ram0 := "000000000000";
ram1 := "000000010000";
ram2 := "000000100000";
If (avalid= '1') then
    if (abus (31 downto 20) = rom ) then romcs <= '1'; else romcs <= '0'; end if;
    if (abus (31 downto 20) = ram0) then ramcs0 <= '1'; else ramcs0 <= '0'; end if;
    if (abus (31 downto 20) = ram1) then ramcs1 <= '1'; else ramcs1 <= '0'; end if;
    if (abus (31 downto 20) = ram2) then ramcs2 <= '1'; else ramcs2 <= '0'; end if;
end if;
end process;
end behave;
```

8.28 The maximum delay from clock to output of a 74 HCT74 flip-flop is 44 ns . For a 4-bit ripple counter, the delay ripples through four such stages for a total maximum delay of 176 ns . Similarly, the maximum delays using 74AHCT and 74LS74 flip-flops are 40 ns and 160 ns , respectively.
8.32

$$
\begin{gathered}
t_{\text {period }(\min)}=t_{\mathrm{pTQ}}+3 t_{\mathrm{AND}}+t_{\text {setup }} \\
f_{\max }=1 / t_{\text {period }(\min)}
\end{gathered}
$$

8.37

Inputs				Current state				Next state			
CLR_L	LD_L	ENT	ENP	QD	QC	QB	QA	QD*	QC*	QB*	QA*
0	x	x	x	x	x	x	x	0	0	0	0
1	0	x	x	x	x	x	x	D	C	B	A
1	1	0	x	x	x	x	x	QD	QC	QB	QA
1	1	x	0	x	x	x	x	QD	QC	QB	QA
1	1	1	1	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	1	0	0	1	0
1	1	1	1	0	0	1	0	0	0	1	1
1	1	1	1	0	0	1	1	0	1	0	0
1	1	1	1	0	1	0	0	0	1	0	1
1	1	1	1	0	1	0	1	0	1	1	0
1	1	1	1	0	1	1	0	0	1	1	1
1	1	1	1	0	1	1	1	1	0	0	0
1	1	1	1	1	0	0	0	1	0	0	1
1	1	1	1	1	0	0	1	0	0	0	0
1	1	1	1	1	0	1	0	1	0	1	1
1	1	1	1	1	0	1	1	0	1	0	0
1	1	1	1	1	1	0	0	1	1	0	1
1	1	1	1	1	1	0	1	0	1	0	0
1	1	1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	0

8.38

The minimum clock period is the sum of:
(a) The delay from the clock edge to any RCO output (35 ns).
(b) The delay from any RCO output to any ENP input, that is, two gate delays $(2 \cdot 15=30 \mathrm{~ns})$.
(c) The setup time to the next clock edge required by the ENP inputs (20 ns).

Thus, the minimum clock period is 85 ns , and the corresponding maximum clock frequency is 11.76 MHz .
8.41 To get even spacing, the strategy is for the MSB (N3) to select half the states, the ones where QA is 0 . The next bit down (N 2) selects one-fourth of the states, the ones where QB is 0 and the less significant counter bits (i.e., QA) are all 1. Likewise, $N 1$ selects the one-eighth of the states where QC is 0 and QB and QA are 1, and N0 selects the state where $Q D$ is 0 and $Q C, Q B$, and $Q A$ are all 1 . In this way, each non- 1111 counter state is assigned to one input bit.

8.53

```
--Chris Dunlap
--Xilinx Applications
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity v74x163s is
generic(size : integer := 8); --added generic
port (clk,clr_l,ld_l,enp,ent : in std_logic;
        d : in std_logic_vector (size-1 downto 0); --changes range of input
        q : out std_logic_vector (size-1 downto 0); --changes range of output
        rco : out std_logic);
end v74x163s;
architecture v74x163_arch of v74x163s is
component synsercell is
    port (clk, ldnoclr, di, coclrorld,cntenp,cnteni : in std_logic;
        qi,cnteni1 : out std_logic);
end component;
signal ldnoclr,noclrorld : std_logic;
signal scnten : std_logic_vector (size downto 0); --creates a ranged temp with overflow room
begin
ldnoclr <= (not ld_l) and clr_l;
noclrorld <= ld_l and clr_l;
scnten(0) <= ent;
rco <= scnten(size);
gi: for i in 0 to size-1 generate --counts for size of counter
    U1: synsercell port map (clk, ldnoclr, noclrorld, enp, d(i), scnten(i), scnten(i+1), q(i));
    end generate;
end v74x163_arch;
```

```
--**********************************
-- PROBLEM : WAKERLY - 8.54
-- FILES :
-- 8_54_top.vhd : top level file
-- 8_54_par2ser.vhd : parallel to serial converter
-- 8_54_control.vhd : control module
-- 8_54_shift_synch.vhd : 8 bit shift register
--
-- DESCRIPTION :
-- Creates a parallel to serial converter.
-- Data in is described as 8 x 8bit modules,
-- with a single 8 bit data bus that carries
-- data of the format given in Figure 8-55.
-- Each serial link has its own SYNCH(i) line;
-- the pulses should be staggered so SYNCH(i+1)
-- occurs 1 clock cycle after SYNCH(i).
--
-- Because of this, the load_synch line should
-- also be staggered so the data transmitted
-- over the serial link will correspond to its
-- associated SYNCH line.
--*************************************
-- library declarations
library IEEE;
use IEEE.std_logic_1164.all;
-- top level entity declaration
entity wak_8_54_top is
    port (
            data: in STD_LOGIC_VECTOR (63 downto 0);
            clock: in STD_LOGIC;
            synch: buffer STD_LOGIC_VECTOR (7 downto 0);
            sdata: out STD_LOGIC_VECTOR (7 downto 0)
        );
end wak_8_54_top;
architecture wak_8_54_arch of wak_8_54_top is
signal load_shift_master: std_logic;
signal synch_master: std_logic;
signal load_shift: std_logic_vector (7 downto 0);
--component declarations
component par2ser is
        port (
            clock: in STD_LOGIC;
            data: in STD_LOGIC_VECTOR (7 downto 0);
            load_shift: in STD_LOGIC;
            sdata: out STD_LOGIC
        );
end component;
```

```
component control is
        port (
            clock: in STD_LOGIC;
            load_shift: out STD_LOGIC;
            synch: out STD_LOGIC
        );
end component;
component shift_synch is
    port (
            clock: in STD_LOGIC;
            synch_in: in STD_LOGIC;
            synch: buffer STD_LOGIC_VECTOR (7 downto 0)
        );
end component;
begin
--component instantiations
S1: shift_synch port map (clock=>clock, synch_in=>synch_master, synch=>synch);
S2: shift_synch port map (clock=>clock, synch_in=>load_shift_master,
synch=>load_shift);
U1: par2ser port map (clock=>clock, data=>data(7 downto 0), load_shift=>load_shift(0),
sdata=>sdata(0));
U2: par2ser port map (clock=>clock, data=>data(15 downto 8),
load_shift=>load_shift(1), sdata=>sdata(1));
U3: par2ser port map (clock=>clock, data=>data(23 downto 16),
load_shift=>load_shift(2), sdata=>sdata(2));
U4: par2ser port map (clock=>clock, data=>data(31 downto 24),
load_shift=>load_shift(3), sdata=>sdata(3));
U5: par2ser port map (clock=>clock, data=>data(39 downto 32),
load_shift=>load_shift(4), sdata=>sdata(4));
U6: par2ser port map (clock=>clock, data=>data(47 downto 40),
load_shift=>load_shift(5), sdata=>sdata(5));
U7: par2ser port map (clock=>clock, data=>data(55 downto 48),
load_shift=>load_shift(6), sdata=>sdata(6));
U8: par2ser port map (clock=>clock, data=>data(63 downto 56),
load_shift=>load_shift(7), sdata=>sdata(7));
U9: control port map (clock=>clock, load_shift=>load_shift_master,
synch=>synch_master);
end wak_8_54_arch;
```

```
--*************************************
-- Basically an 8-bit shift register
-- takes the synch_in signal as an
-- input, and outputs an 8 bit signal,
-- each consecutive bit delayed by one
-- from the previous bit.
-- library declaration
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
-- top level entity declaration
entity shift_synch is
    port (
            clock: in STD_LOGIC;
            synch_in: in STD_LOGIC;
            synch: buffer STD_LOGIC_VECTOR (7 downto 0)
        );
end shift_synch;
architecture shift_synch_arch of shift_synch is
begin
-- low order synch signal is simply passed through
-- to output. all others are delayed.
    synch(0) <= synch_in;
    process(clock)
    begin
        if clock'event and clock='1' then
            for I in 0 to 6 loop
                synch(I+1) <= synch(I);
            end loop;
        end if;
    end process;
end shift_synch_arch;
```

```
--***************************************
-- Parallel to serial converter
-- Data is entered through 8 bit DATA bus
-- It is loaded into the register when
-- load_shift is low. If load_shift is
-- high, shift data serially out through sdata
-- library declarations
library IEEE;
use IEEE.std_logic_1164.all;
-- top level entity declaration
entity par2ser is
    port (
            clock: in STD_LOGIC;
            data: in STD_LOGIC_VECTOR (7 downto 0);
            load_shift: in STD_LOGIC;
            sdata: out STD_LOGIC
        );
end par2ser;
architecture par2ser_arch of par2ser is
-- internal signal declaration
signal REG: STD_LOGIC_VECTOR(7 downto 0);
signal DIN: std_logic;
begin
-- DIN <= O will set the high order bit to be
-- zero once data is loaded in.
DIN <= 'O';
-- process to create shift register
--accomplished by simply taking the DIN signal
--and concatenating on the end the previous
--6 high order bits.
process (clock)
    begin
        if clock'event and clock='1' then
            if load_shift = 'O' then
                REG <= data;
            else
                REG <= DIN & REG(7 downto 1);
            end if;
        end if;
    sdata <= REG(0);
end process;
end par2ser_arch;
```

```
--******************************
-- Control logic
-- controls the loading of the
-- parallel to serial shift register
-- through the load_shift signal.
-- also, controls the synch word.
-- this occurs every 256 clock cycles.
--library declaration
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
--top level entity declaration
entity control is
        port (
            clock: in STD_LOGIC;
            load_shift: out STD_LOGIC;
            synch: out STD_LOGIC
        );
end control;
architecture control_arch of control is
--internal signal declaration
signal COUNT: STD_LOGIC_VECTOR(7 downto 0);
signal load: STD_LOGIC;
begin
load <= 'O'; --define constant
process (clock)
    begin
        if clock'event and clock='1' then
            count <= count + 1;
            if count(2 downto 0) = "110" then
                load_shift <= load;
            else
                load_shift <= not load;
            end if;
            if count = 254 then
                synch <= '1';
            else
                synch <= '0';
            end if;
        end if;
end process;
end control_arch;
```

8.55 This is really the second paragraph of Exercise 8.54.
8.62 Regardless of the number of shift-register outputs connected to the odd-parity circuit, its output in state $00 \ldots 00$ is 0 , and the $00 \ldots 00$ state persists forever. However, suppose that an odd number of shift-register outputs are connected. Then the output of the odd-parity circuit in state $11 \ldots 11$ is 1 , and the $11 \ldots 11$ state also persists forever. In this case, the number of states in the "maximum-length" sequence can be no more than $2^{n}-2$, since two of the states persist forever. Therefore, if an LFSR counter generates a sequence of length $2^{n}-1$, it must have an even number of shift-register outputs connected to the odd-parity circuit.
8.64 The figure below shows the effect of physically changing the odd-parity circuit to an even-parity circuit (i.e., inverting its output).

From Exercise 9.32, we know that an even number of shift-register outputs are connected to the parity circuit, and we also know that complementing two inputs of an XOR gate does not change its output. Therefore, we can redraw the logic diagram as shown below.

Finally, we can move the inversion bubbles as shown below.

This circuit has exactly the same structure as Figure 8-68, except that the shift register stores complemented data. When we look at the external pins of the shift register in the first figure in this solution, we are looking at that complemented data. Therefore, each state in the counting sequence of the even-parity version (our first figure) is the complement of the corresponding state in the odd-parity version (Figure 8-68). The odd-parity version visits all states except $00 \ldots 00$, so the even-parity version visits all states except $11 \ldots 11$.

```
8.68
```

```
--Johnny West
```

--Johnny West
--Xilinx Applications
--Xilinx Applications
--8.68 : Design an iterative circuit for checking the parity of a 16-bit data
--8.68 : Design an iterative circuit for checking the parity of a 16-bit data
-- word with a single even-parity bit.
-- word with a single even-parity bit.
--This portion of the code constructs the iterative module that will cascaded 16
--times in order to check the parity of a 16 bit word.
--
library IEEE;
use IEEE.std_logic_1164.all;
--Generic Iterative Module
entity Iterative_Module is
port (
carry_in, primary_in: in STD_LOGIC;
carry_out: out STD_LOGIC
);
end Iterative_Module;
--An XOR is performed on the current parity of a word (carry_in) and the
--next bit in the word (boundary_in)
--Even parity produces a 0 and odd parity produces a 1
architecture Parity_Check of Iterative_Module is
begin
carry_out <= carry_in xor primary_in;
end Parity_Check;

```
```

--This portion of the code cascades the interative module 16 times and connects the
--modules together.
library IEEE;
use IEEE.std_logic_1164.all;
--Top level entity for checking the parity of a 16bit word
entity Parity_16bit is
port (data_word: in STD_LOGIC_VECTOR (15 downto 0);
parity: out STD_LOGIC);
end Parity_16bit;
--Architecture consists of 16 cascaded iterative modules
architecture Parity_16bit_arch of parity_16bit is
component Iterative_Module
port (carry_in, primary_in: in STD_LOGIC;
carry_out: out STD_LOGIC);
end component;
signal carry: STD_LOGIC_VECTOR (15 downto 0);
signal cin0: STD_LOGIC;
begin
cin0 <= '0';
PO: Iterative_Module port map (cin0, data_word(0), carry(0));
P1: Iterative_Module port map (carry(0), data_word(1), carry(1));
P2: Iterative_Module port map (carry(1), data_word(2), carry(2));
P3: Iterative_Module port map (carry(2), data_word(3), carry(3));
P4: Iterative_Module port map (carry(3), data_word(4), carry(4));
P5: Iterative_Module port map (carry(4), data_word(5), carry(5));
P6: Iterative_Module port map (carry(5), data_word(6), carry(6));
P7: Iterative_Module port map (carry(6), data_word(7), carry(7));
P8: Iterative_Module port map (carry(7), data_word(8), carry(8));
P9: Iterative_Module port map (carry(8), data_word(9), carry(9));
P10: Iterative_Module port map (carry(9), data_word(10), carry(10));
P11: Iterative_Module port map (carry(10), data_word(11), carry(11));
P12: Iterative_Module port map (carry(11), data_word(12), carry(12));
P13: Iterative_Module port map (carry(12), data_word(13), carry(13));
P14: Iterative_Module port map (carry(13), data_word(14), carry(14));
P15: Iterative_Module port map (carry(14), data_word(15), carry(15));
parity <= carry(15); --parity = 0 is even parity and 1 if odd parity
end parity_16bit_arch;

```
8.75 In the following design, RESET is not recognized until the end of phase 6. RESTART is still recognized at the end of any phase; otherwise it would have no real use (i.e., only going back to phase 1 after the end of phase 6,
which happens anyway.) Presumably, RESTART would be used only with great care or in unusual circumstances (e.g., during debugging).
```

module TIMEGEN6
title 'Six-phase Master Timing Generator'
" Input and Output pins
MCLK, RESET, RUN, RESTART pin;
T1, P1_L, P2_L, P3_L, P4_L, P5_L, P6_L pin istype 'reg';
" State definitions
PHASES = [P1_L, P2_L, P3_L, P4_L, P5_L, P6_L];
NEXTPH = [P6_L, P1_L, P2_L, P3_L, P4_L, P5_L];
SRESET = [1, 1, 1, 1, 1, 1];
P1 = [0, 1, 1, 1, 1, 1];
P6 = [1, 1, 1, 1, 1, 0];
equations
T1.CLK = MCLK; PHASES.CLK = MCLK;
WHEN (RESET \& PHASES==P6 \& !T1) THEN {T1 := 1; PHASES := SRESET;}
ELSE WHEN (PHASES==SRESET) \# RESTART THEN {T1 := 1; PHASES := P1;}
ELSE WHEN RUN \& T1 THEN {T1 := 0; PHASES := PHASES;}
ELSE WHEN RUN \& !T1 THEN {T1 := 1; PHASES := NEXTPH;}
ELSE {T1 := T1; PHASES := PHASES;}
end TIMEGEN6

```
8.81 This problem can be a bit confusing since the states in Table \(7-14\) have the same names as the ' 163 data inputs. Therefore, we shall use the names SA, SB, and so on for the states.
The idea is to normally allow the counter to count to the next state, but to force it to go to SA or SB when the wrong input is received. The CLR_L input is used to go to \(S A(0000)\), and the LD_L input is used to go to SB ( 0001 ; the counter's A-D data inputs are tied LOW and HIGH accordingly).
Inspecting the state table on page 582 of the text, we see that state \(A\) should be loaded when \(X=1\) and the machine is in state SA, SD, or SH. Thus,
\[
\begin{aligned}
\mathrm{CLR} \_\mathrm{L} & =\left[\mathrm{X} \cdot\left(\mathrm{QC}^{\prime} \cdot \mathrm{QB}^{\prime} \cdot \mathrm{QA}^{\prime}+\mathrm{QC} \cdot \mathrm{QB} \cdot \mathrm{QA}+\mathrm{QC} \cdot \mathrm{QB} \cdot \mathrm{QA}\right)\right]^{\prime} \\
& =\left[\mathrm{X} \cdot\left(\mathrm{QC}^{\prime} \cdot Q B^{\prime} \cdot \mathrm{QA}+\mathrm{QB} \cdot \mathrm{QA}\right)\right]^{\prime}
\end{aligned}
\]

All of the other next-states when \(X=1\) are the natural successors obtained by counting.
Similarly, state SB should be loaded when \(X=0\) and the machine is in state SB, SC, SE, SF, or SH. In addition, notice that in state \(S G\), the next state \(S E\) is required when \(X=0\); the load input must be used in this case too, but a different value must be loaded. Thus, LD_L will be asserted in six of the eight states when \(X=0\).
Optionally, LD_L could be easily asserted in the remaining two states as well, since the required next states (SB and SE) are ones that we must generate in other six cases anyway. Thus, we can connect \(X\) to the LD_L input, so we always load when \(X=0\). Then, we load either SB (0010) or SE (0100) depending on the current state. Therefore, we can write the following equations for data inputs \(A-D\) :
\[
\begin{aligned}
A & =0 \\
B & =S A+S B+S C+S E+S F+S H \\
& =Q B^{\prime}+Q C^{\prime} \cdot Q A^{\prime}+Q C \cdot Q A \\
C & =B^{\prime} \\
D & =0
\end{aligned}
\]

Alternatively, we could realize \(C\) as an AND-OR circuit and complement to get \(B\) :
\[
\begin{aligned}
& C=Q C^{\prime} \cdot Q B \cdot Q A+Q C \cdot Q B \cdot Q A^{\prime} \\
& B=C^{\prime}
\end{aligned}
\]

The logic diagram follows directly from these equations. The output logic can be realized using the equations on page 584 of the text.
8.90 Transitions on SYNCIN occur a maximum of 20 ns after the rising edge of CLOCK. Given a 40 -ns clock period and a 10 -ns setup-time requirement for the other 'ALS74s, 10 ns is the maximum propagation delay of the combinational logic.

\(74 \times 08\)

\(74 \times 21\)

\(74 \times 30\)


\(74 \times 86\)





16R-Series 20-pin Bipolar PLDs

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{PAL16R8} & \\
\hline 1 & CLK & & \\
\hline 2 & 11 & 01 & 19 \\
\hline 3 & 12 & 02 & 18 \\
\hline 4 & I3 & O3 & 17 \\
\hline 5 & 14 & 04 & 16 \\
\hline 6 & & 05 & 15 \\
\hline 7 & \[
16
\] & 06 & 14 \\
\hline 8 & \[
17
\] & 07 & 13 \\
\hline 9 & 18 & 08 & 12 \\
\hline \({ }^{11}\) & OE & & \\
\hline
\end{tabular}

20X-Series 24-pin Bipolar PLDs


\section*{CMOS GAL Devices}
```

