

Discrete Structures

Topic 3 – Logic: Propositional Equivalences (Ch 1.3)*

CMPS 211 – American University of Beirut

* Extracted from Discrete Mathematics and It's Applications book slides

Tautologies, Contradictions, and Contingencies

- A tautology is a proposition which is always true
 - Example: $p \lor \neg p$
- A contradiction is a proposition which is always false
 - Example: $p \land \neg p$
- A contingency is a proposition which is neither a tautology nor a contradiction, such as p

Р	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$
Т	F	Т	F
F	Т	Т	F

Logical Equivalence

- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree
- Two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology
- We write this as p ⇔ q or as p ≡ q where p and q are compound propositions

Logical Equivalence (cont.)

- Example:
 - Show that $\neg p \lor q$ is equivalent to $p \rightarrow q$

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Proving Logical Equivalences

- We can show that two expressions are logically equivalent by developing a series of logically equivalent statements
- To prove that $A \equiv B$, we produce a series of equivalences beginning with A and ending with B

$$A \equiv A_1 \\ \vdots \\ A_n \equiv B$$

De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
Augustus De Morgan
$$\neg(p \lor q) \equiv \neg p \land \neg q$$
1806-1871

This truth table shows that De Morgan's Second Law holds

p	q	$\neg p$	$\neg q$	(<i>pVq</i>)	¬(<i>pVq</i>)	$\neg p \land \neg q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т

Key Logical Equivalences

- Identity Laws: $p \wedge T \equiv p$, $p \vee F \equiv p$
- Domination Laws: $p \lor T \equiv T$, $p \land F \equiv F$
- \blacktriangleright Idempotent laws: $\ p \lor p \equiv p$, $\ p \land p \equiv p$
- Double Negation Law: $\neg(\neg p) \equiv p$
- Negation Laws: $p \lor \neg p \equiv T$, $p \land \neg p \equiv F$

Key Logical Equivalences (cont.)

 \blacktriangleright Commutative Laws: $\,p\lor q\equiv q\lor p$, $p\land q\equiv q\land p$

Associative Laws:

$$(p \land q) \land r \equiv p \land (q \land r) (p \lor q) \lor r \equiv p \lor (q \lor r)$$

Distributive Laws:

$$(p \lor (q \land r) \equiv (p \lor q)) \land (p \lor r)$$
$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$$

Absorption Laws:

$$p \lor (p \land q) \equiv p$$
$$p \land (p \lor q) \equiv p$$

More Logical Equivalences

TABLE 7 Logical EquivalencesInvolving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

TABLE 8 LogicalEquivalences InvolvingBiconditional Statements. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$ $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Equivalence Proofs

• Example:

 \blacktriangleright Show that $\neg \big(p \lor \big(\neg p \land q \big) \big)$ is logically equivalent to $\neg p \land \neg q$

Solution:

Equivalence Proofs

• Exercise:

 \blacktriangleright Show that $(p \wedge q) \rightarrow (p \vee q)$ is a tautology

Propositional Satisfiability

- A compound proposition is satisfiable if there is an assignment of truth values to its variables that makes it true
- When no such assignments exist, the compound proposition is unsatisfiable
- A compound proposition is unsatisfiable if and only if its negation is a tautology

Propositional Satisfiability (cont)

- Example:
 - Determine the satisfiability of the following compound propositions:

$$(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$$

• Satisfiable by assigning T to *p*, *q*, and *r*

$$(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

• Satisfiable by assigning T to *p* and *F* to *q*

$$(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p) \land (p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

- Not satisfiable
- Check each possible assignment of truth values to the propositional variables and none will make the proposition true

Solving Satisfiability Problems

- In complex problems, for example Sudoku, you have very complex expressions consisting of hundreds of variables
- A truth table can always be used to determine the satisfiability of a compound proposition
 - But this is too time consuming even for modern computers for large problems
- For instance, there are 2²⁰ = 1,048,576 rows in the truth table of a compound proposition with just 20 variables

Solving Satisfiability Problems

- For a proposition with 1000 variables,
- There are 2^{1000} rows in the truth table
- Checking each one at a time cannot be done by a computer in even trillion years!!!
- However, progress has been made developing methods for solving the satisfiability problem that terminate quickly on average, i.e., most of the time
 - For example, in the case of Sudoko puzzles

Any Questions?