American University of Beirut

Discrete Structures Topic 1 - Logic: Propositional Logic (Ch 1.1)*

CMPS 211 - Fall 2017 - American University of Beirut

[^0]
Why logic?

- Logic is a set of principles that can be used to reason about (mathematical) statements
- For instance, let's say we want to formally express and reason about the following statement:
* "For every positive integer n, the sum of the positive integers not exceeding n is $n(n+1) / 2^{\prime \prime}$
- We can formally express the above statement using logic
- We can also prove the above statement or argue whether it is true or false using logic

Why logic? (cont.)

- Logic has numerous applications to Computer Science
- Used in the design of computer circuits
- Used in the construction of computer programs
- Used to verify the correctness of programs
- Used to ensure the security of a system
- Used heavily in artificial intelligence

Propositional Logic

Propositions

- A proposition is a declarative statement that is either true or false
- Examples of propositions:
a) The Moon is made of white cheese
b) Toronto is the capital of Canada
c) A week has more days than a month
d) $1+0=1$
e) $0+0=2$
- Examples that are not proposition
a) Sit down! - command
b) What time is it? - question
c) $1+2$-expressions with a non-true/false value
d) This statement is false - a paradox

Atomic propositions

- We use letters ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \ldots$) to denote atomic propositions
- Also called propositional variables
- Similar to x, y, z, \ldots for numerical variables
- For example, let p be the proposition that the earth is round and q be the proposition that the moon is flat
- These represent a single statement that cannot be "decomposed"

Compound propositions

- Compound propositions are built up from atomic propositions by the use of Boolean connectives. Also called propositional formulae.
- Propositional Logic is the logic of propositional formulae and their meaning
- First developed by the Greek philosopher Aristotle more than 2300 years ago
- George Boole introduced Boolean Algebra in 1854

Propositional Connectives

Propositional Operators/Connectives

- An operator or connective combines one or more operand expressions into a larger expression (e.g., "+" in numeric expressions)
- Unary operators take 1 operand (e.g., -3)
- binary operators take 2 operands (e.g., 3×4)
- Propositional or Boolean operators operate on propositions (or their truth values) instead of numbers
- There are six main operators
- Negation \neg
- Conjunction \wedge
- Disjunction V
- The Exclusive Or \oplus
- Implication \rightarrow
- Biconditional \leftrightarrow

Connectives: Negation

- The negation of a proposition p is denoted by $\neg p$
- In an English statement, we express $\neg p$ as follows: "It's not the case that p "
- \neg p is true if p is false and is false if p is true
- Example:
- If p denotes "I am at home",
- then $\neg \mathrm{p}$ denotes "It is not the case that I am at home" or more simply "I am not at home"
- The negation of a proposition p has this truth table

p	$\neg p$
T	F
F	T

Connectives: Conjunction

- The conjunction of propositions p and q is denoted by $p \wedge q$
- It is the proposition " p and q "
- $p \wedge q$ is true when both p and q are true and is false otherwise
- Example:
- If p denotes "I am at home", and
- q denotes "It is raining"
- then $p \wedge q$ denotes "I am at home and it is raining"

Conjunction (cont.)

- The conjunction of propositions p and q has this truth table

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Connectives: Disjunction

- The disjunction of propositions p and q is denoted by $p \vee q$
- It is the proposition " p or q "
- $p \vee q$ is false when both p and q are false and is true otherwise
- Example:
- If p denotes "I am at home", and
- q denotes "It is raining"
- then $p \vee q$ denotes "I am at home or it is raining"

Disjunction (cont.)

- The disjunction of propositions p and q has this truth table

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Connectives: The Exclusive Or

- The exclusive or of p and q is denoted by $p \oplus q$
- We say p XOR q
- $p \oplus q$ is true when exactly either p or q is true and is false otherwise
- Example:
- If p denotes "I am at home", and
- q denotes "It is raining"
- then $p \oplus q$ denotes :"either I am at home or it is raining" but not both

The Exclusive Or (cont.)

- Note that English "or" can be ambiguous regarding the "both" case!
- "Pat is a singer or

Pat is a writer" V

- "Pat is a man or

Pat is a woman"\oplus

- Need context to understand the meaning!
- For this class, assume "or" means inclusive

The Exclusive Or (cont.)

- The exclusive or of propositions p and q has this truth table

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

Connectives: Implication

- The conditional statement or implication $p \rightarrow q$ is the proposition "if p, then q "
- $p \rightarrow q$ is false when p is true and q is false, and is true otherwise
- p is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence)
- Example:
- If p denotes "I am at home", and
- q denotes "It is raining"
- then $p \rightarrow q$ denotes "If I am at home then it is raining"

Implication (cont.)

- The implication or conditional statement $p \rightarrow q$ has this truth table

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Understanding Implication

- In $p \rightarrow q$ there does not need to be any connection between the hypothesis and the conclusion
- These implications are perfectly fine, but would not be used in ordinary English
- "If the moon is made of green cheese, then I have more money than Bill Gates "
- "If $1+1=3$, then pink elephants can fly"

Examples

* "If you get 100% on the final, then you will get an A"
- Interpretation:
- If you manage to get a 100% on the final, then you would expect to receive an A
- If you do not get a 100%, you may or may not receive an A, depending on other factors (such as...)
- However, if you do get 100\%, but the professor does not give you an A, you will feel cheated

More Examples

" "When I got elected, I will lower the taxes"

- Interpretation:
- If the politician is elected, voters would expect the taxes to get lower
- If the politician is not elected, then the voters have no expectations regarding the taxes, it might get lower, higher, or stay the same.
- It is only when the politician is elected and the taxes are not lower, the voters would say that the politician has broken his campaign pledge

Different Ways of Expressing $p \rightarrow q$

- if p, then q
- if p, q
- p implies q
- p only if q
- a necessary condition for p is q
- p is sufficient for q
- q if p
- q whenever p
- q when p
- q follows from p
- q unless $\neg p$
- q is necessary for p
- a sufficient condition for q is p

Sufficient

* "if p then q " expresses the same thing as " p is sufficient for q "
- This is basically saying that p holding is sufficient for concluding that q will also hold
- Example:
, "if p then q ": If Maria learns discrete mathematics, then she will find a good job

p	q	$p \rightarrow q$
F	F	T
F	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}
T	T	T

" " p is sufficient for q ": Learning discrete mathematics is sufficient for Maria to find a good job

- If Maria doesn't learn discrete mathematics, she might find a good job or not, however if she does learn discrete mathematics, she will find a good job for sure

Necessary

- "if p then q " expresses the same thing as " q is necessary for p "
- This is basically saying that q holding is a necessary conclusion for a holding premise p
- Example:
- 'if p then q ": If you can access the Internet, then

p	q	$p \rightarrow q$
F	F	T
F	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}
T	T	T

- " q is necessary for p ": Paying a subscription fee is necessary for being able to access the Internet
- If you can access the Internet, then you must have paid a subscription fee, however if you cannot access the Internet, you may have paid a subscription fee or not

Only If

* "if p then q " expresses the same thing as " p only if $q^{\prime \prime}$
- This is basically saying that p cannot be true when q is not true
- Example:
* "if p then q ": If you can access the Internet,

p	q	$p \rightarrow q$
F	F	T
F	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}
T	T	T

- " p only if q ": You can access the Internet only if you pay a subscription fee
- If you haven't paid a subscription fee, you cannot access the Internet, however if you did pay a subscription fee, you might be able to access the Internet or not

Unless

- "if p then q " expresses the same thing as " q unless $\neg p^{\prime \prime}$
- This is basically saying that q will be true except if p is false
- Example:
- "if p then q ": If Maria learns discrete

p	q	$p \rightarrow q$
F	F	T
F	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}
T	T	T

Mathematics, then she will find a good job

- "q unless \neg p": Maria will find a good job unless she does not learn discrete mathematics
- We surely know Maria will get a good job, unless she doesn't learn discrete Mathematics - in that case, we don't know whether she'll find a good job or not

Converse, Contrapositive, and Inverse

- From $p \rightarrow q$, we can form new conditional statements
- $q \rightarrow p \quad$ is the converse of $p \rightarrow q$
- $\neg q \rightarrow \neg p$ is the contrapositive of $p \rightarrow q$
- $\neg p \rightarrow \neg q$ is the inverse of $p \rightarrow q$
- Out of these three conditional statements formed from $p \rightarrow q$, only the contrapositive always has the same truth value as $p \rightarrow q$
- The other two might seem to have a similar meaning, but actually translate to different premises and conclusions

Example

Let p denote "I am elected president", and q denote "I will make healthcare free"

- Original $p \rightarrow q$: "If I am elected president, I will make healthcare free"
- Converse $q \rightarrow p$: "If the healthcare was made free, then I am elected president"
- Contrapositive $\neg q \rightarrow \neg p$: "If healthcare wasn't made free, then I haven't been elected president"
- Inverse $\neg p \rightarrow \neg q$: "If I wasn't elected president, then the health care won't be made free"

Example Explained

- The contrapositive clearly means the same thing as the original statement
- I made a pledge that healthcare will be made free when I get elected to presidency
- Consequently, if the healthcare wasn't made free, then surely I haven't been elected for presidency
- The converse, on the other hand, means something else
- It says that observing healthcare made for free will lead to concluding that I have been elected for presidency, which isn't what the original statement says
- The original statement keeps space for the case when I don't get elected for presidency, yet someone else makes healthcare for free
- The same logic applies for the inverse

Exercise

- Find the converse, inverse, and contrapositive of "It raining is a sufficient condition for me not going to town"
- Solution:
- Original : If it is raining, then I won't go to town
- Converse: If I do not go to town, then it is raining
- Inverse: If it is not raining, then I will go to town
- Contrapositive: If I go to town, then it is not raining

Another Exercise

- Find the converse, inverse, and contrapositive of "The home team wins whenever it is raining"
- Solution:
- Original: if it is raining, then the home team wins
- Converse: if the home team wins, then it is raining
- Inverse: if it is not raining, the home team won't win
- Contrapositive: If the home team doesn't win, then it is not raining

Connectives: Biconditional

- The biconditional proposition $p \leftrightarrow q$ is the proposition " p if and only if q "
- The biconditional $p \leftrightarrow q$ is true when p and q have the same truth values and is false otherwise
- Also called bi-implications
- Example:
- If p denotes "buying a ticket",
- and q denotes "can take a flight"
- then $p \leftrightarrow q$ denotes "I can take a flight if and only if I buy a ticket"
- This statement is true when you buy a ticket and can take a flight, Or when you don't buy a ticket and can't take a flight
- It is false when you buy a ticket and can't take a flight (like when the airlines bumps you)
- Or when you don't buy a ticket and can take a flight (like when you win a ticket)

Biconditional

- The biconditional proposition $p \leftrightarrow q$ has this truth table

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Expressing the Biconditional

- Some alternative ways " p if and only if q " is expressed in English
- p iff q
- if p then q, and conversely
- p is necessary and sufficient for q
- Example:
- You will be always informed if and only if you read a newspaper everyday
- If you read a newspaper everyday, then you will be informed, and conversely
- To be always informed, it is necessary and sufficient to read a newspaper everyday

Implicit Use Of Biconditionals

- Human natural language is not explicit on biconditionals most of the times
- People use "if, then" and "only if" constructs and mean "if and only if" implicitly
- For example, consider the statement in English: "If you finish your meal, then you can have dessert"
- What is really meant is "You can have dessert if and only if you finish your meal"
- Here, we will always distinguish between the conditional statement $p \rightarrow q$ and the biconditional statement $p \leftrightarrow q$

Precedence of Logical Operators

- When multiple logical operators are used in the same compound proposition, we follow the following precedence order to understand it:
- Note that all operators are right associative (conventionally)
- Parentheses can also be used to disambiguate
- Example:

Operator Precedence
, $p \vee q \rightarrow \neg r$ is equivalent to $(p \vee q) \rightarrow \neg r$

- If the intended meaning is $p \vee(q \rightarrow \neg r)$, then parentheses must be used

$\boldsymbol{\neg}$	1
$\boldsymbol{\wedge}$	2
\mathbf{v}	3
\rightarrow	4
\leftrightarrow	5

Another Example

- Parse the following propositional statement Op. Prec.

$$
\mathrm{p} \wedge \neg \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s}
$$

\neg	1
\wedge	2
\mathbf{v}	3
\rightarrow	4
\leftrightarrow	5

- Note that all operators are right associative
- Parentheses can also be used to disambiguate

Another Example

- Parse the following propositional statement Op. Prec.

$$
\begin{gathered}
\mathrm{p} \wedge \neg \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
\mathrm{p} \wedge(\neg \mathrm{q}) \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s}
\end{gathered}
$$

\rightarrow	4
\leftrightarrow	5

- Note that all operators are right associative
- Parentheses can also be used to disambiguate

Another Example

- Parse the following propositional statement Op. Prec.

$$
\begin{gathered}
\mathrm{p} \wedge \neg \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
\mathrm{p} \wedge(\neg \mathrm{q}) \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow(\neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s}
\end{gathered}
$$

\rightarrow	4
\leftrightarrow	5

- Note that all operators are right associative
- Parentheses can also be used to disambiguate

Another Example

- Parse the following propositional statement

Op. Prec.

$$
\begin{aligned}
\mathrm{p} \wedge \neg \mathrm{q} & \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
\mathrm{p} \wedge(\neg \mathrm{q}) & \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) & \rightarrow(\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) & \rightarrow((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t}) \leftrightarrow(\mathrm{q} \vee \mathrm{~s})
\end{aligned}
$$

Op.
$-\quad 1$

$\wedge \quad 2$
v 3
$\begin{array}{ll}\rightarrow & 4 \\ \leftrightarrow & 5\end{array}$

- Note that all operators are right associative
- Parentheses can also be used to disambiguate

Another Example

- Parse the following propositional statement

Op.
 Prec.

$$
\begin{aligned}
& \mathrm{p} \wedge \neg \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
& \mathrm{p} \wedge(\neg \mathrm{q}) \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
& (\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
& (p \wedge(\neg q)) \rightarrow((p \wedge r) \vee s) \rightarrow(\neg t) \leftrightarrow(q \vee s) \\
& (p \wedge(\neg q)) \rightarrow(((p \wedge r) \vee s) \rightarrow(\neg t)) \leftrightarrow(q \vee s)
\end{aligned}
$$

- Note that all operators are right associative
- Parentheses can also be used to disambiguate

Another Example

- Parse the following propositional statement

Op.
 Prec.

$$
\begin{gathered}
\mathrm{p} \wedge \neg \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
\mathrm{p} \wedge(\neg \mathrm{q}) \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t}) \leftrightarrow(\mathrm{q} \vee \mathrm{~s}) \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t})) \leftrightarrow(\mathrm{q} \vee \mathrm{~s}) \\
((\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t}))) \leftrightarrow(\mathrm{q} \vee \mathrm{~s})
\end{gathered}
$$

$\boldsymbol{\jmath}$	1
$\boldsymbol{\wedge}$	2
\mathbf{v}	3
\rightarrow	4
\rightarrow	5

Another Example

- Parse the following propositional statement

Op.
 Prec.

$$
\begin{gathered}
\mathrm{p} \wedge \neg \mathrm{q} \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow \neg \mathrm{t} \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
\mathrm{p} \wedge(\neg \mathrm{q}) \rightarrow \mathrm{p} \wedge \mathrm{r} \vee \mathrm{~s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s} \rightarrow(\neg \mathrm{t}) \leftrightarrow \mathrm{q} \vee \mathrm{~s} \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t}) \leftrightarrow(\mathrm{q} \vee \mathrm{~s}) \\
(\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t})) \leftrightarrow(\mathrm{q} \vee \mathrm{~s}) \\
((\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow(((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t}))) \leftrightarrow(\mathrm{q} \vee \mathrm{~s}) \\
((\mathrm{p} \wedge(\neg \mathrm{q})) \rightarrow((\mathrm{p} \wedge \mathrm{r}) \vee \mathrm{s}) \rightarrow(\neg \mathrm{t}))) \leftrightarrow(\mathrm{q} \vee \mathrm{~s}))
\end{gathered}
$$

- Note that all operators are right associative
- Parentheses can also be used to disambiguate

Truth Tables

Truth Tables For Compound Propositions

- Rows
- Need a row for every possible combination of values for the atomic propositions
- Columns
- Need a column for the compound proposition (usually at far right)
- Need a column for the truth value of each expression that occurs in the compound proposition as it is built up
- This includes the atomic propositions

Example Truth Table

Construct a truth table for $p \vee q \rightarrow \neg r$

p	q	r	$\neg \mathrm{r}$	$\mathrm{p} \vee \mathrm{q}$	$\mathrm{p} \vee \mathrm{q} \rightarrow \neg \mathrm{r}$
T	T	T	F	T	F
T	T	F	T	T	T
T	F	T	F	T	F
T	F	F	T	T	T
F	T	T	F	T	F
F	T	F	T	T	T
F	F	T	F	F	T
F	F	F	T	F	T

Equivalent Propositions

- Two propositions are equivalent if they always have the same truth value
- Example:
- Show using a truth table that the implication is equivalent to the contrapositive: $(\mathrm{p} \rightarrow \mathrm{q}) \Leftrightarrow(\neg \mathrm{q} \rightarrow \neg \mathrm{p})$
- Solution:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Using a Truth Table to Show Non-Equivalence

- Example:

- Show using truth tables that neither the converse nor inverse of an implication are equivalent to the implication
- Solution:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg p \rightarrow \neg q$	$q \rightarrow p$
T	T	F	F	T	T	T
T	F	F	T	F	T	T
F	T	T	F	T	F	F
F	F	T	T	T	T	T

Biconditional Truth Table

- $p \leftrightarrow q$ means that p and q have the same truth value
- Note this truth table is the exact opposite of \oplus 's!

Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$

- $p \leftrightarrow q$ does not imply that p and q are true, or that either of them causes the other, or that they have a common cause

p	q	$\mathrm{p} \oplus \mathrm{q}$	$\neg(\mathrm{p} \oplus \mathrm{q})$	$\mathrm{p} \leftrightarrow \mathrm{q}$
T	T	F	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	T	T

Exercise

- How many rows are there in a truth table with n propositional variables?
- Solution: $2^{\text {n }}$
- Note that this means that with n propositional variables, we can construct $2^{\text {n }}$ distinct (i.e., not equivalent) propositions

Semantics of propositional formulae

- A proposition is valid iff it evaluates to true in every row of its truth table
- A proposition is satisfiable iff it evaluates to true in some row of its truth table
- A proposition is valid iff its negation is not satisfiable
- A proposition is a contingency iff it is satisfiable and its negation is satisfiable
- A proposition is a contradiction iff it evalutes to false in every row of its truth table, i.e., iff its negation is valid

Any Questions?

[^0]: * Extracted from Discrete Mathematics and It's Applications book slides

