Problem 1 (20 Points)

a. (10) Using truth tables, show that

 $(p \rightarrow r) \land (q \rightarrow r)$ is equivalent to $(p \lor q) \rightarrow r$ Use truth tables to show that the given compound proposition is a tautology.

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \land (q \rightarrow r)$	$p \lor q$	$(p \lor q) \to r$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	F	Т	F
Т	F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	Т	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	F
F	F	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	F	Т

b. (10) Using (a), and without using truth tables, show that the following is a tautology, using equivalences. Justify each step in your proof.

$$(p \lor q) \land (p \to r) \land (q \to r) \to r$$

$$\equiv (p \lor q) \land ((p \lor q) \to r) \to r \text{ (part (a))}$$

$$\equiv T \qquad (Modus \text{ Ponens: } P \land (P \to r) \to r \text{ is a tautology}$$

with P being $p \lor q$)

Can also be done by using $p \rightarrow q \equiv \neg p \lor q$ several times, and then simplifying the expression to show that it is equivalent to T.

Problem 2 (15 Points)

Consider the following predicates:

S(x):	" <i>x</i> is a student in this class",
J(x):	" <i>x</i> is a student who knows how to write Java programs",
C(x):	" <i>x</i> is a student who knows how to write C++ programs".
P(x):	"x is a student who can get a well-paying job".

Where *x* is a variable whose domain is the set of students in the university. Express each of the following in predicate logic:

a. (5) Salwa is a student who is not in this class, but knows how to program in C++.

 \neg S(Salwa) \land C(Salwa)

b. (5) There are students in this class that do not know how to program in both Java and C++

 $\exists x (S(x) \land (\neg J(x) \lor \neg C(x))$

OR

 $\exists x (S(x) \land \neg (J(x) \land C(x)))$

Another answer which reflects another meaning of the sentence (English is ambiguous) is

 $\exists x (S(x) \land \neg J(x) \land \neg C(x))$

Both answers have been considered correct.

c. (5) There are at least two students in this class who know how to program in Java $\exists x \exists y (S(x) \land S(y) \land J(x) \land J(y) \land J(x) \land \neg(x=y))$

Problem 3 (15 Points)

Consider the following argument involving the predicates above of the previous problem:

 $\forall x (S(x) \to J(x) \lor C(x))$ $S(Amin) \land \neg C(Amin)$ $\forall x (J(x) \to P(x))$ $\vdots \exists x (S(x) \land P(x))$

a. (10) Establish the validity of the argument justifying each step.

1. $\forall x (S(x) \rightarrow J(x) \lor C(x))$	Premise
2. $S(Amin) \rightarrow J(Amin) \lor C(Amin)$	(1) and Universal Instantiation (UI)
3. $S(Amin) \wedge \neg C(Amin)$	Premise
4. <i>S</i> (<i>Amin</i>)	(4), Simplification
5. $J(Amin) \lor C(Amin)$	(2), (4) and Modus Ponens
6. $\neg C(Amin) \land S(Amin)$	(3), \wedge is Commutative
7. [¬] <i>C</i> (<i>Amin</i>)	(6), Simplification
8. $C(Amin) \lor J(Amin)$	(5), \vee is Commutative
9. J(Amin)	(8), (7), Disjunctive Syllogism
10. $S(Amin) \wedge J(Amin)$	(4), (9) and Conjunction
11. $\therefore \exists x (S(x) \land P(x))$	(10), Existential Generalization

b. (5) Express in English the argument above.

Any student in the class knows how to program in Java or in C++. Amin is a student in the class who does not know how to program in C++. Any student who knows how to program in Java can get a well-paid job. Therefore, some student in the class can get a well-paid job.

Problem 4 (15 Points)

Recall that a real number x is **rational** if it can be written as the quotient of two integers; i.e. x = m/n, where m and n are integers, n non-zero; Otherwise, x is said to be **irrational**.

Prove or disprove each of the following. In each case specify which method of proof did you use. a. (5) The product of two rational numbers is rational.

Direct Proof:

Let *x* and *y* be any two rational numbers. Then $x = \frac{m}{n}$ and $y = \frac{p}{q}$ for some integers *m*, *n*, $n \neq 0$, and *p*, *q*, $q \neq 0$. So $xy = = \frac{mp}{nq}$. *mp* and *nq* are integers, with $nq \neq 0$ (since $n \neq 0$, and $q \neq 0$) Therefore *xy* is rational.

b. (5) The sum of two irrational numbers is irrational.

Counter Example:

Let $x=\sqrt{2}$, and $y = -\sqrt{2}$. Then x and y are irrational. Yet their sum is 0, $x + y = \sqrt{2} + (-\sqrt{2}) = 0$. And 0 is rational.

c. (5) The sum of a rational number and an irrational number is irrational. Proof by Contradiction:

Let *x* be a rational number, $x = \frac{m}{n}$ with integers *m*, *n*, $n \neq 0$, and let *y* irrational. Suppose that x+y=z. For the sake of contradiction, assume *z* is rational. Then $z = \frac{p}{q}$ with integers *p*, *q*, $q \neq 0$. Thus $y = z - x = \frac{m}{n} - \frac{p}{q} = \frac{mq - np}{nq}$

But *mq-np* is an integer, and *nq* is an integer, $nq\neq 0$ (since $n\neq 0$, and $q\neq 0$)

So *y* is rational.

Contradiction (*y* is irrational and *y* is rational).

So our assumption that z is rational is false. So z is irrational.

Problem 5. (10 Points)

Suppose $B = \{2, \{2\}\}$. Mark each of the following statements as TRUE or FALSE (Circle the right answer)

a.	$\{2\}\in B.$	TRUE	FALSE
b.	$\{2\} \subseteq B.$	TRUE	FALSE
c.	$2 \subseteq B$.	TRUE	FALSE
d.	B = 1	TRUE	FALSE
e.	$\varphi = \{\phi\}$	TRUE	FALSE

Problem 6. (10 Points)

Suppose that the set membership table for a set expression *X* involving two sets *A* and *B* is the following:

A	В	Х
1	1	0
1	0	1
0	1	0
0	0	1

Give a set expression for *X*, in terms of *A* and *B* (or their complements!)

Similar to Distributive Normal Form adapted to Set Membership. Then have a union of intersections: See where there is a 1 in the column of *X*; then form the intersection of *A* or its complement with *B* or its complement, depending on whether A=1 (then include *A*) or 0 (then include *A*'s complement), and the same for *B*.

So here: $X = (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$

Problem 7 (25 Points)

The symmetric difference of two sets *A* and *B* denoted by $A \oplus B$ is the set of elements that are in *A* or in *B* but not in both!! So $\{1, 3, 5\} \oplus \{1, 2, 3\} = \{2, 5\}$.

 $x \in A \oplus B$ is equivalent to $x \in (A \cup B) \land x \notin (A \cap B)$

a. (5) Draw a Venn diagram to represent $A \oplus B$.

b. (10) Use set builder notation and propositional logic to show that $A \oplus B = (A-B) \cup (B-A)$ $A \oplus B = \{ x \mid x \in (A \cup B) \land x \notin (A \cap B) \}$ by definition $= \{ x / (x \in A \lor x \in B) \land \neg (x \in A \land x \in B) \}$ = { $x/(x \in A \lor x \in B) \land (\neg x \in A \lor \neg x \in B)$ } De Morgans = { $x/((x \in A \lor x \in B) \land \neg x \in A) \lor ((x \in A \lor x \in B) \land \neg x \in B)$ } Distributive property of \land wrt \lor $= \{ x / ((x \in A \land \neg x \in A) \lor (x \in B \land \neg x \in A)) \lor ((x \in A \land \neg x \in B) \lor (x \in B \land \neg x \in B)) \}$ Distributive property of \land wrt \lor = { $x/(F \lor (x \in B \land \neg x \in A)) \lor ((x \in A \land \neg x \in B) \lor F)$ } Negation laws $p \land \neg p = F$ $= \{ x / ((x \in B \land \neg x \in A)) \lor ((x \in A \land \neg x \in B)) \}$ Identity law $p \lor F \equiv p$ $= \{ x / ((x \in B - A)) \lor ((x \in A - B)) \}$ Definition of *B*-A and *A*-B Definition of \cup $= (B-A) \cup (A-B)$ $= (A-B) \cup (B-A)$ \cup is commutative

c. (10) Show that A = B if and only if $A \oplus B = \phi$. (Hint: Use (b), and if $A - B = \phi$ then $A \subseteq B$)

Suppose $A \oplus B = \phi$, then $(A - B) \cup (B - A) = \phi$. So $A - B = \phi$ and $A - B = \phi$. So $A \subseteq B$ and $B \subseteq A$. So A = B. Now, suppose A = B. Then $A - B = \phi$ and $A - B = \phi$. So $(A - B) \cup (B - A) = \phi$. Therefore $A \oplus B = \phi$.