Problem 1 (20 Points)

a. (10) Using truth tables, show that
$(p \rightarrow r) \wedge(q \rightarrow r)$ is equivalent to $(p \vee q) \rightarrow r$

| p | q | r | $p \rightarrow r$ | $q \rightarrow r$ | $(p \rightarrow r) \wedge(q \rightarrow r)$ | $p \vee q$ | $(p \vee q) \rightarrow r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T | T | T |
| T | T | F | F | F | F | T | F |
| T | F | T | T | T | T | T | T |
| T | F | F | F | T | F | T | F |
| F | T | T | T | T | T | T | T |
| F | T | F | T | F | F | T | F |
| F | F | T | T | T | T | F | T |
| F | F | F | T | T | T | F | T |

b. (10) Using (a), and without using truth tables, show that the following is a tautology, using equivalences. Justify each step in your proof.

$$
\begin{aligned}
(p \vee q) \wedge(p \rightarrow r) \wedge & (q \rightarrow r) \rightarrow r \\
& \equiv(p \vee q) \wedge((p \vee q) \rightarrow r) \rightarrow r(\text { part (a)) }) \\
& \left.\equiv \mathrm{T} \quad \begin{array}{l}
\text { (Modus Ponens: } P \wedge(P \rightarrow r) \rightarrow r \text { is a tautology } \\
\text { with } P \text { being } p \vee q)
\end{array}\right)
\end{aligned}
$$

Can also be done by using $p \rightarrow q \equiv \neg p \vee q$ several times, and then simplifying the expression to show that it is equivalent to T .

Problem 2 (15 Points)

Consider the following predicates:
$S(x)$: " x is a student in this class",
$J(x)$: " x is a student who knows how to write Java programs",
$C(x)$: " x is a student who knows how to write C++ programs".
$P(x)$: " x is a student who can get a well-paying job".
Where x is a variable whose domain is the set of students in the university.
Express each of the following in predicate logic:
a. (5) Salwa is a student who is not in this class, but knows how to program in C++.
$\neg S($ Salwa $) \wedge C(S a l w a)$
b. (5) There are students in this class that do not know how to program in both Java and C++ $\exists x(S(x) \wedge(\neg J(x) \vee \neg C(x))$
OR
$\exists x(S(x) \wedge \neg(J(x) \wedge C(x)))$
Another answer which reflects another meaning of the sentence (English is ambiguous) is
$\exists x(S(x) \wedge\urcorner J(x) \wedge\urcorner C(x))$
Both answers have been considered correct.
c. (5) There are at least two students in this class who know how to program in Java

$$
\exists x \exists y(S(x) \wedge S(y) \wedge J(x) \wedge J(y) \wedge J(x) \wedge\urcorner(x=\mathrm{y}))
$$

Problem 3 (15 Points)

Consider the following argument involving the predicates above of the previous problem:

$$
\begin{aligned}
& \forall x(S(x) \rightarrow J(x) \vee C(x)) \\
& S(A \min) \wedge \neg C(\text { Amin }) \\
& \forall x(J(x) \rightarrow P(x))
\end{aligned}
$$

$$
\therefore \exists x(S(x) \wedge P(x))
$$

a. (10) Establish the validity of the argument justifying each step.

1. $\forall x(S(x) \rightarrow J(x) \vee C(x))$
2. $S($ Amin $) \rightarrow J($ Amin $) \vee C($ Amin $)$
3. $S($ Amin $) \wedge \neg C($ Amin $)$
4. S (Amin)
5. $J($ Amin $) \vee C(A \min)$
6. $\neg C($ Amin $) \wedge S($ Amin $)$
7. $\neg C($ Amin $)$
8. $C($ Amin $) \vee J($ Amin $)$
9. J (Amin)
10. S (Amin) $\wedge J($ Amin $)$
11. $\therefore \exists x(S(x) \wedge P(x))$

Premise
(1) and Universal Instantiation (UI)

Premise
(4), Simplification
(2), (4) and Modus Ponens
(3),\wedge is Commutative
(6), Simplification
(5), \vee is Commutative
(8), (7), Disjunctive Syllogism
(4), (9) and Conjunction
(10), Existential Generalization
b. (5) Express in English the argument above.

Any student in the class knows how to program in Java or in C++. Amin is a student in the class who does not know how to program in C++. Any student who knows how to program in Java can get a well-paid job. Therefore, some student in the class can get a well-paid job.

Problem 4 (15 Points)

Recall that a real number x is rational if it can be written as the quotient of two integers; i.e. $x=$ m / n, where m and n are integers, n non-zero; Otherwise, x is said to be irrational.

Prove or disprove each of the following. In each case specify which method of proof did you use.
a. (5) The product of two rational numbers is rational.

Direct Proof:
Let x and y be any two rational numbers.
Then $x=\frac{m}{n}$ and $y=\frac{p}{q}$ for some integers $m, n, n \neq 0$, and $p, q, q \neq 0$.
So $x y==\frac{m p}{n q} . m p$ and $n q$ are integers, with $n q \neq 0$ (since $n \neq 0$, and $q \neq 0$)
Therefore $x y$ is rational.
b. (5) The sum of two irrational numbers is irrational.

Counter Example:

Let $x=\sqrt{ } 2$, and $y=-\sqrt{ } 2$. Then x and y are irrational. Yet their sum is $0, x+y=\sqrt{ } 2+(-\sqrt{ } 2)=0$. And 0 is rational.
c. (5) The sum of a rational number and an irrational number is irrational. Proof by Contradiction:

Let x be a rational number, $x=\frac{m}{n}$ with integers $m, n, n \neq 0$, and let y irrational. Suppose that $x+y=z$. For the sake of contradiction, assume z is rational. Then $z=\frac{p}{q}$ with integers $p, q, q \neq 0$.
Thus $y=z-x=\frac{m}{n}-\frac{p}{q}=\frac{m q-n p}{n q}$
But $m q-n p$ is an integer, and $n q$ is an integer, $n q \neq 0$ (since $n \neq 0$, and $q \neq 0$)
So y is rational.
Contradiction (y is irrational and y is rational).
So our assumption that z is rational is false. So z is irrational.

Problem 5. (10 Points)

Suppose $B=\{2,\{2\}\}$. Mark each of the following statements as TRUE or FALSE (Circle the right answer)
a. $\quad\{2\} \in B$.
b. $\quad\{2\} \subseteq B$.
c. $\quad 2 \subseteq B$.
d. $\quad|B|=1$

FALSE
TRUE
FALSE
TRUE
FALSE
TRUE
FALSE
e. $\phi=\{\phi\}$
TRUE

Problem 6. (10 Points)

Suppose that the set membership table for a set expression X involving two sets A and B is the following:

A	B	X
1	1	0
1	0	1
0	1	0
0	0	1

Give a set expression for X, in terms of A and B (or their complements!)
Similar to Distributive Normal Form adapted to Set Membership. Then have a union of intersections: See where there is a 1 in the column of X; then form the intersection of A or its complement with B or its complement, depending on whether $A=1$ (then include A) or 0 (then include A 's complement), and the same for B.

So here: $\quad X=(A \cap \bar{B}) \cup(\bar{A} \cap \bar{B})$

Problem 7 (25 Points)

The symmetric difference of two sets A and B denoted by $A \oplus B$ is the set of elements that are in A or in B but not in both!! So $\{1,3,5\} \oplus\{1,2,3\}=\{2,5\}$.
$x \in A \oplus B$ is equivalent to $x \in(A \cup B) \wedge x \notin(A \cap B)$
a. (5) Draw a Venn diagram to represent $A \oplus B$.

b. (10) Use set builder notation and propositional logic to show that $A \oplus B=(A-B) \cup(B-A)$
$A \oplus B=\{x \mid x \in(A \cup B) \wedge x \notin(A \cap B)\} \quad$ by definition
$=\{x \mid(x \in A \vee x \in B) \wedge\urcorner(x \in A \wedge x \in B)\}$
$=\{x \mid(x \in A \vee x \in B) \wedge(\neg x \in A \vee \neg x \in B)\} \quad$ De Morgans
$=\{x \mid((x \in A \vee x \in B) \wedge\urcorner x \in A) \vee((x \in A \vee x \in B) \wedge\urcorner x \in B)\}$ Distributive property of \wedge wrt \vee
$=\{x \mid((x \in A \wedge\urcorner x \in A) \vee(x \in B \wedge\urcorner x \in A)) \vee((x \in A \wedge\urcorner x \in B) \vee(x \in B \wedge\urcorner x \in B))\}$
Distributive property of \wedge wrt \vee
$=\{x \mid(F \vee(x \in B \wedge\urcorner x \in A)) \vee((x \in A \wedge\urcorner x \in B) \vee F)\}$ Negation laws $p \wedge \neg p \equiv F$
$=\{x \mid((x \in B \wedge\urcorner x \in A)) \vee((x \in A \wedge\urcorner x \in B))\} \quad$ Identity law $p \vee F \equiv p$
$=\{x \mid((x \in B-A)) \vee((x \in A-B))\} \quad$ Definition of $B-A$ and $A-B$
$=(B-A) \cup(A-B) \quad$ Definition of \cup
$=(A-B) \cup(B-A) \quad \cup$ is commutative
c. (10) Show that $A=B$ if and only if $A \oplus B=\phi$. (Hint: Use (b), and if $A-B=\phi$ then $A \subseteq B$)

Suppose $A \oplus B=\phi$, then $(A-B) \cup(B-A)=\phi$. So $A-B=\phi$ and $A-B=\phi$. So $A \subseteq B$ and $B \subseteq A$. So $A=B$.
Now, suppose $A=B$. Then $A-B=\phi$ and $A-B=\phi . \quad$ So $(A-B) \cup(B-A)=\phi$. Therefore $A \oplus B=\phi$.

