Quiz 2

Duration: 1 hour

This exam is closed notes.

Question 1 (On Proofs) (15\%)

Let x denote an integer. Show that the following statements are equivalent:

1. $3 x-2$ is odd.
2. $x+8$ is odd.
3. $x^{2}+2$ is even.

Question 2 (On Induction) (30\%)

(a) (10\%) Show that $\exists k>0$ such that $x^{2}-3 x-4 \geq 0 \quad \forall x \geq k$.

Let n denote a positive integer which is a power of 2 and let $f(n)$ denote the recursive function defined by

$$
f(n)=\left\{\begin{array}{ccc}
1 & \text { if } & n=1 \\
f\left(\frac{n}{2}\right)+n & \text { if } & n>1
\end{array}\right.
$$

We wish to show that the predicate $f(n) \leq 2 n \log n$ is true $\forall n \geq 2$.
(b) ($\mathbf{1 0 \%}$) Can one use mathematical (weak) induction to establish the predicate? Justify why or why not.
(c) $\mathbf{(1 0 \%})$ Use strong induction to establish the predicate.

Question 3 (On Iterative Algorithms) (25\%)

(a) $\mathbf{(1 0 \%})$ Devise, and write pseudo-code for, an iterative algorithm which takes a list of integers and returns the sum of all integers in this list that are greater than 10.
(b) ($\mathbf{1 5 \%}$) Prove that your algorithm is correct.

Question 4 (On Recursive Algorithms) (30\%)

Consider the following test which checks whether a given integer k is even or odd:

$$
k \bmod 2=\left\{\begin{array}{lll}
1 & \text { if } & k \text { is odd } \\
0 & \text { if } & k \text { is even }
\end{array}\right.
$$

where mod denotes the operator yielding the remainder of division of k by 2 .
(a) ($\mathbf{1 0 \%}$) Devise, and write pseudo-code for, a recursive algorithm which returns whether or not a list of integers contains an odd number.
(b) (10\%) Trace your algorithm on the list: $\{2,14,6,81\}$.
(c) $\mathbf{(1 0 \%})$ Prove that your algorithm is correct.

Answer Sheet 1

Answer Sheet 2

Answer Sheet 3

Answer Sheet 4

Answer Sheet 5

Answer Sheet 6

Answer Sheet 7

Answer Sheet 8

Answer Sheet 9

Answer Sheet 10

