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Introduction to Set Theory

* A set is a structure representing an
unordered collection (group, plurality) of
zero or more distinct (different) objects.

 Set theory deals with operations between,
relations among, and statements about sets.

« Sets are ubiquitous in computer software
systems.

Module #3 -.Sets

Naive set theory

 Basic premise: Any collection or class of
objects (elements) that we can describe (by
any means whatsoever) constitutes a set.




Basic notations for sets

* For sets, we’ll use variables S, 7, U, ...

* We can denote a set S in writing by listing
all of its elements in curly braces:
— {a, b, c} is the set of whatever 3 objects are
denoted by a, b, c.
* Set builder notation: For any proposition

P(x) over any universe of discourse,
{x|P(x)} 1s the set of all x such that P(x).

Basic properties of sets

 Sets are inherently unordered:

— No matter what objects a, b, and ¢ denote,
{a,b,c} ={a,c,b} ={b,a,c} =
{b,c,a} = {c,a, b} = {c, b, a}.
 All elements are distinct (unequal);
multiple listings make no difference!
— If a=b, then {a, b, c} = {a,c} ={b,c} =
{a,a,b,a,b,c,c,c,c}.

— This set contains (at most) 2 elements!
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Definition of Set Equality

» Two sets are declared to be equal if and only if
they contain exactly the same elements.

* In particular, it does not matter how the set is
defined or denoted.

* For example: The set {1, 2, 3,4} =
{x | x 1s an integer where x>0 and x<5 } =

{x | x is a positive integer whose square
1s >0 and <25}
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Infinite Sets

» Conceptually, sets may be infinite (i.e., not finite,
without end, unending).
Symbols for some special infinite sets:
N={0,1,2,...} The Natural numbers.
Z={..,-2,-1,0,1,2, ...} The Zntegers.
R = The “Real” numbers, such as
374.1828471929498181917281943125...
“Blackboard Bold” or double-struck font (N,Z,R)
1s also often used for these special number sets.



Basic Set Relations: Member of

e xe§ (“x1s in §”) is the proposition that
object x is an element or member of set S.
—e.g. 3eN, “a”e{x | x is a letter of the alphabet}
— Can define set equality in terms of € relation:
VS, T: S=T & (Vx: xeS & xeT)
“Two sets are equal iff they have all the same
Pasiiigintegers ssl + xgS:=—(xeS) “xisnotinS”

Integers-from -
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The Empty Set Subset and Superset Relations

* O (“null”, “the empty set”) is the unique set ' » ScT (“Sis a subset of 7°) means that every
that contains no elements whatsoever. element of S 1s also an element of 7.

» U= {} = {x|False} _ ScT < Vx (xeS —> xel)
* No matter the domain of discourse, IS, ScS.
we have the axiom —3Jx: xe(d. SOT (“S is a superset of 7”’) means TcS.
Note S=T < ScThA SOT.
S & T'means —~(ScT), i.e. Ix(xeS A xeT)




Proper (Strict) Subsets & Supersets

« ST (“S1s a proper subset of 7”°) means
that ScT but T S. Similarly for SoT.

Example:
{1,2} c
{1,2,3}

Venn Diagram equivalent of ScT

Exercise

* Show that JcS.

Proof: Let S be a set. To show that DS, we must
show that ¥x (xe & — xe€ §) is true. Because the
empty set contains no elements, it follows that xe
@ is always false. It follows that the conditional
statement xe & — xe S is always true, because
its hypothesis is always false and a conditional
statement with a false hypothesis is true. That is,
Vx (xe @ — xe S) is true. This complete the
proof (a vacuous one).

odule #3 -.Sets

Sets Are Objects, Too!

» The objects that are elements of a set may
themselves be sets.
e Eg letS={x|xc {1,2,3}}
then S={J,
5,425, 35,
1,23, 11,3}, 12,3},
11,2,3}}
* Notethat | # {1} #
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Cardinality and Finiteness

* |§| (read “the cardinality of ) is a measure
of how many different elements S has.

* Eg.,|91=0, [{1,2,3}[=3, [{ab}|=2,
[({1.2.3}.{45}} = 2
 If |S|eN, then we say S is finite.
Otherwise, we say S is infinite.




» The power set P(S) of a set S is the set of all ' » What is the power set of the empty set?
subsets of S. P(S) = {x | x&S}. What is the power set of the set {J}?

* Eg P({a)b}) = {J, {a}, {b}, {a,b}}.
« Sometimes P(S) is written 25,
Note that for finite S, |P(S)| = 215

« It turns out V.S:|P(S)[>[S], e.g. |[P(N)| > |N|.
There are different sizes of infinite sets!
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Ordered n-tuples Cartesian Products of Sets

» These are like sets, except that duplicates '  For sets 4, B, their Cartesian product
matter, and the order makes a difference. AxB = {(a,b) | acA A beB }.

» For neN, an ordered n-tuple or a sequence _ E.g {ab}x{1,2} = {(a,1),(a,2),(b,1),(b,2)}

lis first element s a,, etc. Contasiuin Note that the Cartesian product is not

* Note that (1, 2) # (2, 1) # (2, 1, 1). ¥ sets’ {3 _ commutative: i.e., - VAB: AxB=BxA.

* Empty sequence, singles, pairs, triples, Extends to 4, x 4, x ... x 4,...
quadruples, quintuples, ..., n-tuples.




Using Set Notation With Quantifiers

» Let 4 represent the set of all students at a  Universal Quantifier: Vx € S(P(x)) is a
university, and let B represent the set of all shorthand for Vx (x € § = P(x))
courses offered at the university. What is « Existential Quantifier: 3x e S(P(x)) is a
the Cartesian product AxB? shorthand for 3x (x € S A P(x))

* What is the Cartesian product AxB xC,
where 4 = {0,1}, B={1,2},and C =
{0,1,2}?
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* What do the statements Vx € R (x2>¢) and 3x € | » Given a predicate P and a domain D, the truth set
N (x* =1) mean? of P is the set of elements x in D for which P(x) is
true. It is denoted by {x € D | P(x)}.

Exercise: what are the truth sets of the predicates
P(x), Q(x), and R(x), where D is the set of
integers, and P(x) is " |x| = 17, Q(x) is " x* =27,
and R(x) is " |x]| =x7"?




Set Operations: The Union Operator Union Examples

» For sets 4, B, theirtnion AUB i1s the set ' « {a,b,c}U{2,3} ={a,b,c,2,3}
containing all elements that are either in 4, « {2,3,5}0{3,5,7} = {2,3,5,3,5,7} @
or (“v’) in B (or, of course, in both).
* Formally, VA,B: AUB = {x|xeA v xeB}.
» Note that AUB is a superset of both 4 and

B (in fact, it is the smallest such superset):
VA, B: (AuB 2 A) A (AUB 2 B)
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The Intersection Operator Intersection Examples

» For sets 4, B, their intersection ANB 1is the ' « {a,b,c}Nn{23}=g

set containing all elements that are « {2461n{3,45)}=_ {4}
simultaneously in 4 and (“A”) in B.

» Formally, VA4,B: AnB={x|x€A A xeB}.
* Note that An\B 1s a subset of both A and B

(in fact it is the largest such subset):
VA, B: (ANB c A) A (ANB < B)




Disjointedness

* Two sets 4, B are called
disjoint iff their intersection is
empty. (ANB=D)

» Example: the set of even
integers is disjoint with
the set of odd integers.

Inclusion-Exclusion Principle

* How many elements are in A\UB?
|AUB| = |A| + |B| — |[ANB| (why?)
« Example: How many students are on our
class email list? Consider set £ =7 M,
I = {s | s turned in an information sheet}
M = {s | s sent the TAs their email address}

* Some students did both!
|E| = [TOM] = || + [M| — [InM]
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Set Difference

 For sets 4, B, the difference of A and B,
written 4—B, 1s the set of all elements that
are in 4 but not B. Formally:

A—-B:={x|xed Anx¢B}
= {x|—(xed - xeB) }
 Also called:
The complement of B with respect to A.
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Set Difference Examples




Set Difference - Venn Diagram

* A—B is what’s left after B
“takes a bite out of 4

Set Complements

» The universe of discourse can itself be
considered a set, call it U.

» When the context clearly defines U, we say
that for any set ACU, the complement of A,
written A, is the complement of 4 w.r.t. U,
ie.,1t1s U-A.

« Eg. IfU=N, {3,5}=10,1,2,4,6,7,...}
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More on Set Complements

* An equivalent definition, when U is clear:

A={x|xe A
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Set Identities

Identity: AV =4=ANU
Domination: AVU=U , AnND =
Idempotent: Aud=A4=A4NA

Double complement: @ =A
Commutative: AUB =BUA , AnB =BNA

Associative: AU(BUC)=(AUB)LC ,
ANBNCO)y=(ANB)NC




DeMorgan’s Law for Sets

 Exactly analogous to (and provable from)
DeMorgan’s Law for propositions.

AUB=ANB
ANB=AUB

More Laws

» Absorption: A4 NB)=A4
ANn(AVUB)=A4
* Complement: AU A=U
AnA =2
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Proving Set Identities

To prove statements about sets, of the form
E, = E, (where the Es are set expressions),
here are three useful techniques:

1. Prove E, c E, and E, c E, separately.

2. Use set builder notation &
logical equivalences.

3. Use a membership table.
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Exercise

e Provethat 4~B=4uUB

» Use set builder notation to prove the same
identity.




Exercise Exercise

Show AN(BUC)=(ANB)AN(ANC). ' Show AN(BUC)=(ANB)A(ANC).
* Part 1: Show AN(BLUCO)c(ANB)I(ANC).
— Assume xe AN(BLC), & show xe(4NB)I(ANC).

— We know that xe A, and either xeB or xeC.
e Case l: xeB. Then xeANB, so xe(ANB)I(ANC).
e Case 2: xeC. Then xeANC, so xe(ANB)U(ANC).

— Therefore, xe(ANB)I(ANC).
— Therefore, AN(BLC)(ANB)I(ANC).
» Part 2: Show (ANB)U(ANC) < AN(BUO). ...
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Exercise Generalized Unions & Intersections

« Show that 4U(BNC)=(CuB)N4 ' « Since union & intersection are commutative
and associative, we can extend them from
operating on ordered pairs of sets (4,B) to
operating on sequences of sets (4,,...,4,),
or even on unordered sets of sets.




Generalized Union Exercise

« Binary union operator: 4UB ' « Letd,= {ii+1, i+2,...}. Find L:JlAi and QA

* p-ary union: i )
AuA 0. A, = (L (A0 Ay) U )U A4,) * Letd;= {123 ....i}.Find U4 and()4.
(grouping & order is irrelevant)

* “Big U” notation: o 4

i=1

* Or for infinite sets of sets: U A

AeX
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Generalized Intersection Representations

 Binary intersection operator: ANB | * A frequent theme of this course will be
« n-ary intersection: methods of representing one discrete

structure using another discrete structure of
A,ndyn A =((...(A,0A)A.. )N, _ &

a different type.
(grouping & order is irrelevant) yp

« E.g., one can represent natural numbers as
— Sets: 0:=7, 1:={0}, 2:={0,1}, 3:={0,1,2}, ...
i=1 _ — Bit strings:
« Or for infinite sets of sets: ﬂ A 0:=0, 1:=1,2:=10, 3:=11, 4:=100, ...
AeX

* “Big Arch” notation: ﬂ A




Representing Sets with Bit Strings

For an enumerable u.d. U with ordering
X, X,, ..., Tepresent a finite set SCU as the
finite bit string B=b,b,...b, where
Vi: x;eS > (i<n A b=1).

E.g. U=N, §={2,3,5,7,11}, B=001101010001.

In this representation, the set operators

2 €6 2% ¢

“U”, “n”, are implemented directly by
bitwise OR, AND, NOT!




