
1

Module #5 - Algorithms

American University of Beirut
Dept. of Computer Science 

CMPS/Math 211
Discrete Structures

2

Module #5 - Algorithms

Section 3.1:Algorithms

Abu al-Khowarizmi
(ca. 780-850)

3

Module #5 - Algorithms

Algorithms

•• The foundation of computer programming.The foundation of computer programming.
•• Most generally, an Most generally, an algorithmalgorithm just means a definite just means a definite 

procedure for performing some sort of task.procedure for performing some sort of task.
•• A computer A computer programprogram is simply a description of an is simply a description of an 

algorithm, in a language precise enough for a algorithm, in a language precise enough for a 
computer to understand, requiring only operations computer to understand, requiring only operations 
that the computer already knows how to do.that the computer already knows how to do.

•• We say that a program We say that a program implementsimplements (or (or ““is an is an 
implementation ofimplementation of””) its algorithm.) its algorithm.

4

Module #5 - Algorithms

Algorithms You Already Know

•• GradeGrade--school arithmetic algorithms:school arithmetic algorithms:
–– How to add any two natural numbers written in How to add any two natural numbers written in 

decimal on paper, using carries.decimal on paper, using carries.
–– Similar: Subtraction using borrowing.Similar: Subtraction using borrowing.
–– Multiplication & long division.Multiplication & long division.

•• Your favorite cooking recipe.Your favorite cooking recipe.
•• How to register for classes at a university.How to register for classes at a university.



5

Module #5 - Algorithms

Programming Languages

•• Some common programming languages:Some common programming languages:
–– Newer:Newer: Java, C, C++, C#, Visual Basic, Java, C, C++, C#, Visual Basic, 

JavaScript, Perl, JavaScript, Perl, TclTcl, Pascal, many others, Pascal, many others……
–– Older:Older: Fortran, Cobol, Lisp, BasicFortran, Cobol, Lisp, Basic
–– Assembly languages, for lowAssembly languages, for low--level coding.level coding.

•• In this class we will use an informal, In this class we will use an informal, 
PascalPascal--like like ““pseudopseudo--codecode”” language.language.

•• You should know at least 1 real language!You should know at least 1 real language!
6

Module #5 - Algorithms

Algorithm Example (English)

•• Task:Task: Given a sequence {Given a sequence {aaii}=}=aa11,,……,,aann, , 
aaii∈∈NN,, say what its largest element is.say what its largest element is.

•• One algorithm for doing this, in English:One algorithm for doing this, in English:
–– Set the value of a Set the value of a temporary variabletemporary variable vv (largest (largest 

element seen so far) to element seen so far) to aa11’’s value.s value.
–– Look at the next element Look at the next element aaii in the sequence.in the sequence.
–– If If aaii>>vv, then re, then re--assign assign vv to the number to the number aaii..
–– Repeat then previous 2 steps until there are no Repeat then previous 2 steps until there are no 

more elements in the sequence, & return more elements in the sequence, & return vv..

7

Module #5 - Algorithms

Executing an Algorithm

•• When you start up a piece of software, we When you start up a piece of software, we 
say the program or its algorithm are being say the program or its algorithm are being 
run run or or executedexecuted by the computer.by the computer.

•• Given a description of an algorithm, you Given a description of an algorithm, you 
can also execute it by hand, by working can also execute it by hand, by working 
through all of its steps with pencil & paper.through all of its steps with pencil & paper.

•• Before ~1940, Before ~1940, ““computercomputer”” meant a meant a personperson
whose job was to execute algorithms!whose job was to execute algorithms!

8

Module #5 - Algorithms

Executing the Max algorithm

•• Let {Let {aaii}=7,12,3,15,8.   Find its maximum}=7,12,3,15,8.   Find its maximum……
•• Set Set vv = = aa1 1 = 7.= 7.
•• Look at next element: Look at next element: aa22 = 12.= 12.
•• Is Is aa22>>vv?  Yes, so change ?  Yes, so change vv to 12.to 12.
•• Look at next element: Look at next element: aa22 = 3.= 3.
•• Is 3>12?  No, leave Is 3>12?  No, leave vv alonealone……..
•• Is 15>12?  Yes, Is 15>12?  Yes, vv=15=15……



9

Module #5 - Algorithms

Algorithm Characteristics

Some important general features of algorithms:Some important general features of algorithms:
•• InputInput.  .  Information or data that comes in.Information or data that comes in.
•• Output. Output. Information or data that goes out.Information or data that goes out.
•• Definiteness.  Definiteness.  Algorithm is precisely defined.Algorithm is precisely defined.
•• Correctness.Correctness. Outputs correctly relate to inputs.Outputs correctly relate to inputs.
•• Finiteness.  Finiteness.  WonWon’’t take forever to describe or run.t take forever to describe or run.
•• Effectiveness.  Effectiveness.  Individual steps are all doIndividual steps are all do--able.able.
•• Generality.  Generality.  Works for many possible inputs.Works for many possible inputs.
•• Efficiency.Efficiency. Takes little time & memory to run.Takes little time & memory to run.

10

Module #5 - Algorithms

Our Pseudocode Language: §A2

procedureprocedure
namename((argumentargument: : typetype))

variablevariable :=:= expressionexpression
informal statementinformal statement
beginbegin statementsstatements endend
{{commentcomment}}
ifif conditioncondition then then 

statementstatement [else [else 
statementstatement]]

for for variablevariable :=:= initial initial 
valuevalue to to final valuefinal value

statementstatement
whilewhile conditioncondition

statementstatement
procnameprocname((argumentsarguments))

Not defined in book:Not defined in book:
returnreturn expressionexpression

11

Module #5 - Algorithms

procedure procname(arg: type)

•• Declares that the following text defines a Declares that the following text defines a 
procedure named procedure named procnameprocname that takes that takes 
inputs (inputs (argumentsarguments) named ) named argarg which are which are 
data objects of the type data objects of the type typetype..
–– Example:Example:

procedureprocedure maximummaximum((LL: list of integers): list of integers)
[statements defining [statements defining maximummaximum……]]

12

Module #5 - Algorithms

variable := expression

•• An An assignment assignment statement evaluates the statement evaluates the 
expression expression expressionexpression, then reassigns the , then reassigns the 
variable variable variablevariable to the value that results.to the value that results.
–– Example assignment statement:Example assignment statement:

vv :=:= 33xx+7         (If +7         (If xx is 2, changes is 2, changes vv to 13.)to 13.)

•• In In pseudocodepseudocode (but not real code), the (but not real code), the 
expressionexpression might be informally stated:might be informally stated:
–– xx :=:= the largest integer in the list the largest integer in the list LL



13

Module #5 - Algorithms

Informal statement

•• Sometimes we may write a statement as an Sometimes we may write a statement as an 
informal English imperative, if the meaning informal English imperative, if the meaning 
is still clear and precise: is still clear and precise: e.g.e.g.,,““swapswap xx and and yy””

•• Keep in mind that real programming Keep in mind that real programming 
languages never allow this.languages never allow this.

•• When we ask for an algorithm to do soWhen we ask for an algorithm to do so--andand--
so, writing so, writing ““Do soDo so--andand--soso”” isnisn’’t enough!t enough!
–– Break down algorithm into detailed steps.Break down algorithm into detailed steps.

14

Module #5 - Algorithms

begin statements end

•• Groups a sequence of Groups a sequence of 
statements together:statements together:
beginbegin

statement 1statement 1
statement 2statement 2
……
statement nstatement n

endend

•• Allows the sequence Allows the sequence 
to be used just like a to be used just like a 
single statement.single statement.

•• Might be used:Might be used:
–– After a After a procedureprocedure

declaration.declaration.
–– In an In an ifif statement after statement after 

thenthen or or elseelse..
–– In the body of a In the body of a forfor or or 

whilewhile loop.loop.
Curly braces {} are used instead
in many languages.

15

Module #5 - Algorithms

{comment}

•• Not executed (does nothing).Not executed (does nothing).
•• NaturalNatural--language text explaining some language text explaining some 

aspect of the procedure to human readers.aspect of the procedure to human readers.
•• Also called a Also called a remarkremark in some real in some real 

programming languages, programming languages, e.g.e.g. BASIC.BASIC.
•• Example, might appear in a Example, might appear in a maxmax program:program:

–– {Note that {Note that vv is the largest integer seen so far.}is the largest integer seen so far.}

16

Module #5 - Algorithms

if condition then statement

•• Evaluate the propositional expression Evaluate the propositional expression 
conditioncondition..
–– If the resulting truth value is If the resulting truth value is TrueTrue, then , then 

execute the statement execute the statement statementstatement; ; 
–– otherwise, just skip on ahead to the next otherwise, just skip on ahead to the next 

statement after the statement after the ifif statement.statement.
•• Variant:  Variant:  ifif condcond thenthen stmt1stmt1 elseelse stmt2stmt2

–– Like before, but Like before, but iffiff truth value is truth value is FalseFalse, , 
executes executes stmt2stmt2..



17

Module #5 - Algorithms

while condition statement

•• EvaluateEvaluate the propositional (Boolean) the propositional (Boolean) 
expression expression conditioncondition..

•• If the resulting value is If the resulting value is TrueTrue, then execute , then execute 
statementstatement..

•• Continue repeating the above two actions Continue repeating the above two actions 
over and over until finally the over and over until finally the conditioncondition
evaluates to evaluates to FalseFalse; then proceed to the next ; then proceed to the next 
statement.statement.

18

Module #5 - Algorithms

while condition statement

•• Also equivalent to infinite nested Also equivalent to infinite nested ififs, like so: s, like so: 
if if conditioncondition

beginbegin
statement statement 
if if conditioncondition

beginbegin
statement statement 
……(continue infinite nested if(continue infinite nested if’’s)s)

endend
endend

19

Module #5 - Algorithms

for var := initial to final stmt

•• InitialInitial is an integer expression.is an integer expression.
•• FinalFinal is another integer expression.is another integer expression.
•• Semantics:Semantics: Repeatedly execute Repeatedly execute stmtstmt, first , first 

with variable with variable varvar :=:= initialinitial, then with , then with varvar
:=:= initialinitial+1+1, then with , then with varvar :=:= initialinitial+2+2, , 
etcetc., then finally with ., then finally with varvar :=:= finalfinal..

20

Module #5 - Algorithms

for var := initial to final stmt
•• ForFor can be exactly defined in terms of can be exactly defined in terms of 

while,while, like so:like so: begin
var := initial
while var ≤ final

begin
stmt
var := var + 1

end
end



21

Module #5 - Algorithms

procedure(argument)

•• A A procedure callprocedure call statement invokes the statement invokes the 
named named procedureprocedure, giving it as its input the , giving it as its input the 
value of the value of the argumentargument expression.expression.

•• Various real programming languages refer Various real programming languages refer 
to procedures as to procedures as functionsfunctions (since the (since the 
procedure call notation works similarly to procedure call notation works similarly to 
function application function application ff((xx)), or as )), or as subroutinessubroutines, , 
subprogramssubprograms, or , or methodsmethods..

22

Module #5 - Algorithms

Max procedure in pseudocode

procedureprocedure maxmax((aa11, , aa22, , ……, , aann: integers): integers)
vv :=:= aa11 {largest element so far}{largest element so far}
forfor ii :=:= 2 2 toto n    n    {go thru rest of {go thru rest of elemselems}}

ifif aaii > > vv then then vv :=:= aaii {found bigger?}{found bigger?}
{at this point {at this point vv’’ss value is the same asvalue is the same as

the largest integer in the list}the largest integer in the list}
returnreturn vv

23

Module #5 - Algorithms

Another example task

•• Problem of Problem of searching an ordered listsearching an ordered list..
–– Given a list Given a list L L of of nn elements that are sorted into elements that are sorted into 

a definite order (a definite order (e.g.e.g., numeric, alphabetical),, numeric, alphabetical),
–– And given a particular element And given a particular element xx,,
–– Determine whether Determine whether xx appears in the list,appears in the list,
–– and if so, return its index (position) in the list.and if so, return its index (position) in the list.

•• Problem occurs often in many contexts.Problem occurs often in many contexts.
•• LetLet’’s find an s find an efficientefficient algorithm!algorithm!

24

Module #5 - Algorithms

Search alg. #1: Linear Search

procedureprocedure linear searchlinear search
((xx: integer, : integer, aa11, , aa22, , ……, , aann: distinct integers): distinct integers)
ii :=:= 1  1  {start at beginning of list}{start at beginning of list}
whilewhile ((ii ≤≤ nn ∧∧ xx ≠≠ aaii) ) {not done, not found}{not done, not found}

ii :=:= ii + 1   + 1   {go to the next position}{go to the next position}
ifif ii ≤≤ n n then then locationlocation :=:= ii {it was found}{it was found}
elseelse locationlocation :=:= 0  0  {it wasn{it wasn’’t found}t found}
return return location location {index or 0 if not found}{index or 0 if not found}



25

Module #5 - Algorithms

Search alg. #2: Binary Search

•• Basic idea: On each step, look at the Basic idea: On each step, look at the middlemiddle
element of the remaining list to eliminate element of the remaining list to eliminate 
half of it, and quickly zero in on the desired half of it, and quickly zero in on the desired 
element.element.

<x >x<x <x

26

Module #5 - Algorithms

Search alg. #2: Binary Search

procedureprocedure binary searchbinary search
((xx:integer:integer, a, a11, , aa22, , ……, , aann: distinct integers): distinct integers)
ii :=:= 1  1  {left endpoint of search interval}{left endpoint of search interval}
jj :=:= nn {right endpoint of search interval}{right endpoint of search interval}
whilewhile ii<<j j beginbegin {while interval has >1 item}{while interval has >1 item}

mm :=:= ((ii++jj)/2)/2 {midpoint}{midpoint}
ifif xx>>aamm thenthen i i :=:= mm+1 +1 else else j j :=:= mm

endend
ifif xx = = aaii thenthen locationlocation :=:= ii elseelse locationlocation :=:= 00
returnreturn locationlocation

27

Module #5 - Algorithms

Practice exercises

•• Devise an algorithm that finds the sum of Devise an algorithm that finds the sum of 
all the integers in a list.  [2 min]all the integers in a list.  [2 min]

•• procedureprocedure sumsum((aa11, , aa22, , ……, , aann: integers): integers)
ss :=:= 0     0     {sum of {sum of elemselems so far}so far}
forfor ii :=:= 1 1 toto n    n    {go thru all {go thru all elemselems}}

ss :=:= ss + + aaii {add current item}{add current item}
{at this point {at this point ss is the sum of all items}is the sum of all items}
returnreturn s             s             

28

Module #5 - Algorithms

Sorting Algorithms

•• Sorting is a common operation in many Sorting is a common operation in many 
applications.applications.
–– E.g.E.g. spreadsheets and databasesspreadsheets and databases

•• It is also widely used as a subroutine in It is also widely used as a subroutine in 
other dataother data--processing algorithms.processing algorithms.

•• Two sorting algorithms shown in textbook:Two sorting algorithms shown in textbook:
–– Bubble sortBubble sort
–– Insertion sortInsertion sort

However, these are not
very efficient, and you should
not use them on large data sets!

We’ll see some more efficient algorithms later in the course.



29

Module #5 - Algorithms

Insertion Sort Algorithm

•• English description of algorithm:English description of algorithm:
–– For each item in the input list,For each item in the input list,

•• ““InsertInsert”” it into the correct place in the sorted output list it into the correct place in the sorted output list 
generated so far.  Like so:generated so far.  Like so:

–– Use linear or binary search to find the location where the new Use linear or binary search to find the location where the new 
item should be inserted.item should be inserted.

–– Then, shift the items from that position onwards down by one Then, shift the items from that position onwards down by one 
position.  position.  

–– Put the new item in the hole remaining.Put the new item in the hole remaining.

–– Use this algorithm to put the elements of the list 3, 2, 4, Use this algorithm to put the elements of the list 3, 2, 4, 
1, 5 in increasing order1, 5 in increasing order

30

Module #5 - Algorithms

Insertion Sort

Alg.:Alg.: INSERTIONINSERTION--SORTSORT(A)(A)
for for j j ←← 22 to to nn

do do keykey ←← A[ j ]A[ j ]
Insert Insert A[ j ]A[ j ] into the sorted sequence into the sorted sequence A[1 . . j A[1 . . j --1]1]
i i ←← j j -- 11
while while i > 0i > 0 and and A[iA[i] > key] > key

do do A[iA[i + 1] + 1] ←← A[iA[i]]
i i ←← i i –– 11

A[iA[i + 1] + 1] ←← keykey

31

Module #5 - Algorithms

Correctness

• Loop Invariant (a condition that never 
changes): at the start of the for loop the 
elements in A[1 . . j-1] are in sorted order

32

Module #5 - Algorithms

32

Proving Loop Invariants
•• Initialization (base case): Initialization (base case): It is true prior to the first It is true prior to the first 

iteration of the loopiteration of the loop

•• Maintenance (inductive step): Maintenance (inductive step): If it is true before If it is true before 
an iteration of the loop, it remains true before the an iteration of the loop, it remains true before the 
next iterationnext iteration

•• Termination: Termination: When the loop terminates, the When the loop terminates, the 
invariant  gives us a useful property that helps show invariant  gives us a useful property that helps show 
that the algorithm is correct. Stop the induction that the algorithm is correct. Stop the induction 
when the loop terminateswhen the loop terminates



33

Module #5 - Algorithms

33

Loop Invariant for Insertion Sort

•• Initialization: Initialization: 
–– Just before the first iteration, Just before the first iteration, j = 2j = 2::

the the subarraysubarray A[1 . . jA[1 . . j--1]1] = = A[1],A[1], (the (the 
element originally in element originally in A[1]A[1]) ) –– is sortedis sorted

34

Module #5 - Algorithms

34

Loop Invariant for Insertion Sort
•• Maintenance: Maintenance: 

–– Assume the list Assume the list A[1,A[1,……,j ,j --1] is sorted. 1] is sorted. 
Show that at the end of one loop Show that at the end of one loop 
iteration, A[1,iteration, A[1,……,j] is also sorted.,j] is also sorted.

–– the the while while inner loop moves inner loop moves A[jA[j --1], 1], A[jA[j --
2], 2], A[jA[j --3],3], and so on, by one position to and so on, by one position to 
the right until the proper position for the right until the proper position for keykey
(which has the value that started out in (which has the value that started out in A[jA[j]]) ) 
is found. is found. 

35

Module #5 - Algorithms

35

Loop Invariant for Insertion Sort

•• Maintenance: Maintenance: 
–– At that point, the value of At that point, the value of keykey is placed into this is placed into this 

position.position.
–– Since all elements having been moved to the Since all elements having been moved to the 

right side of the key are already sorted, and the right side of the key are already sorted, and the 
key is in its right position in that all elements to key is in its right position in that all elements to 
its left are less than itself, the entire list its left are less than itself, the entire list A[1,A[1,……,j] ,j] 
is also so.is also so.

36

Module #5 - Algorithms

36

Loop Invariant for Insertion Sort

•• Termination: Termination: 
–– The outer The outer for for loop ends when loop ends when j > n (j > n (i.ei.e, , j = n + 1j = n + 1) ) 
⇒⇒ jj--1 = n1 = n

–– Replace Replace nn with with jj--11 in the loop invariant: in the loop invariant: 
•• the the subarraysubarray A[1 . . n]A[1 . . n] consists of the elements originally in consists of the elements originally in 
A[1A[1 . . n],. . n], but in sorted orderbut in sorted order

•• The entire array is sorted!The entire array is sorted!


