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Section 4.1 
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 c)  Inductive Hypothesis: 13 + 23 + 33 + …. + n3 = 
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 d)  Assuming the inductive hypothesis in (c), need to show that  
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f) By completing the basis step and the inductive step, we’ve shown that this  
statement is true for all positive integers n. 

 
6- 1⋅1! + 2⋅2! + …. +n⋅n! = (n+1)! – 1 
 Basis step: 1⋅1! = 1   (1+1)! – 1 = 2! – 1 = 2 – 1 = 1 
   ⇒ 1⋅1! = (1+1)! – 1. 
 Inductive Hypothesis: 1⋅1! + 2⋅2! + …. +n⋅n! = (n+1)! – 1 
 Inductive Step: Show that 1⋅1! + 2⋅2! + …. +n⋅n! + (n+1)⋅(n+1)! = (n+2)! – 1 ? 
 1⋅1! + 2⋅2! + …. +n⋅n! + (n+1)⋅(n+1)! =  (n+1)! – 1 + (n+1)⋅(n+1)! 
       =  (n+1)! [1+(n+1)] – 1 
       =  (n+1)! (n+2) – 1  =  (n+2)! – 1 
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      For positive integers n: 
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      Basis Step: shown in part (a) above for n = 1 

      Inductive Hypothesis: 
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16 -  1·2·3 + 2·3·4 +...+  n(n+1)(n+2)= 
 ୬ሺ୬ାଵሻሺ୬ାଶሻሺ୬ାଷሻ

ସ
 

Basis Step: true for n=1, P(1) true,  1·2·3= ଵሺଵାଵሻሺଵାଶሻሺଵାଷሻ
ସ

, 6 = 6 
 
Inductive Step:  Suppose that P(k) is true, k > 0  
1·2·3+ 2·3·4+...+ k(k+1)(k+2)=  ୩ሺ୩ାଵሻሺ୩ାଶሻሺ୩ାଷሻ
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Show that P(k+1) is true 
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Section 4.2 
 
 
4- P(n): a postage of n cents can be formed using 4-cent stamps and 7-cent stamps 
 Show P(n) is true for all n ≥ 18. 

a)  P(18) : 18 = 4+14 = 4⋅1 + 7⋅2  ⇒  True for n=18 
     P(19) : 18 = 12+7 = 4⋅3 + 7⋅1  ⇒  True for n=19 
     P(20) : 20 =          = 4⋅5 + 7⋅0  ⇒  True for n=20 
     P(21) : 21 =          = 4⋅0 + 7⋅3  ⇒  True for n=21 
b) Inductive Hypothesis: P(n) is true for all 18 ≤ n ≤  k,  

i.e. P(n) = 4k1 + 7k2 for some k1 , k2 ≥ 0 
c) Inductive Step: Required to prove that P(k+1) is true for k ≥ 22. 
d) P(k+1)    = P(k) + 1 

         = P(k–1) + 2 
         = P(k–2) + 3 
         = P(k–3) + 4 

      But       P(k–3) is true    by inductive hypothesis 
i.e. P(k–3) = 4k1 + 7k2 for some k1 , k2 ≥ 0 

      So       P(k+1) = 4k1 + 7k2 + 4 = 4(k1 +1) + 7k2  
⇒ P(k+1) is true for all k ≥ 22 

  ∴ P(n) is true for all n≥ 18. 
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Section 4.3 
 
4- a)  f(n+1) = f(n) – f(n-1)    f(0) = f(1) = 1 
      f(2) = f(1) – f(0) = 1 – 1 = 0 
      f(3) = f(2) – f(1) = 0 – 1 = -1 
      f(4) = f(3) – f(2) = (-1) – 0 = -1 
      f(5) = f(4) – f(3) = (-1) – (-1) = 0  
 

b)  f(n+1) = f(n) f(n-1)     f(0) = f(1) = 1 
      f(2) = f(1) f(0) = (1) (1) = 1 
      f(3) = f(2) f(1) = (1) (1) = 1 
      f(4) = f(3) f(2) = (1) (1) = 1 
      f(5) = f(4) f(3) = (1) (1) = 1 
 
 c)  f(n+1) = f(n)2 + f(n-1)3    f(0) = f(1) = 1 
      f(2) = f(1)2 + f(0)3 = (1)2 + (1)3 = 1 + 1 = 2 
      f(3) = f(2)2 + f(1)3 = (2)2 + (1)3 = 4 + 1 = 5 
      f(4) = f(3)2 + f(2)3 = (5)2 + (2)3 = 25 + 8 = 33 
      f(5) = f(4)2 + f(3)3 = (33)2 + (5)3 = 1089 + 125 = 1214 
 

d)  f(n+1) = f(n) / f(n-1)    f(0) = f(1) = 1 
      f(2) = f(1) / f(0) = 1 / 1 = 1 
      f(3) = f(2) / f(1) = 1 / 1 = 1 
      f(4) = f(3) / f(2) = 1 / 1 = 1 
      f(5) = f(4) / f(3) = 1 / 1 = 1 
 
6- a)  f(0) = 1, f(n) = –  f(n-1)  for n ≥ 1 
     Valid:  f(n) = (– 1)n  for n ≥ 1 
      Proof: Basis Step: f(1) = (–1)1 = –1 
        Inductive Hypothesis: f(n) = (– 1)n  for n ≥ 1 
               Inductive Step: f(n+1) = –  f(n) = – (– 1)n = (– 1) (– 1) n = (– 1) n+1 
 
 d)  f(0) = 0, f(1) = 1 f(n) = 2 f(n-1)  for n ≥ 1 
     Not Valid: defined starting at n=1, but f(1) = 2 f(0) = 2⋅ 0 = 0 ≠ 1. 
 
 e)  f(0) = 2, f(n) = f(n-1)   if n is odd and n ≥ 1 

f(n) = 2 f(n-2)  if n ≥ 2 

     Valid:  f(n) = 
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      Proof: Basis Step: f(0) = 2 (0+2) / 2 = 21 = 2 
f(1) = 2 (1+1) / 2 = 21 = 2 = f(0) 

        Inductive Hypothesis: f(n) = 
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      Inductive Step:   



• n is even ⇒  f(n) = 2 (n+2) / 2 ⇒ n+1 is odd  
    ⇒ Show f(n+1) = 2 (n+1 +1) / 2 = 2 (n+2) / 2 

  f(n+1) =  f((n+1)-1)    (by recursive definition) 
  =  f(n) = 2 (n+2) / 2  (by induction hypothesis)  True 

•   n is odd   ⇒  f(n) = 2 (n+1) / 2 ⇒ n+1 is even  
    ⇒ Show f(n+1) = 2 (n+1 +2) / 2 = 2 (n+3) / 2 

  f(n+1) =  2 f((n+1)-1)   (by recursive definition) 
  =  2 f(n) = 2⋅ 2 (n+1) / 2  (by induction hypothesis)   
  =  2 (n+1) / 2 + 1 = 2 (n+1 +2) / 2 = 2 (n+3) / 2   True 

 
10- Sm(n) is the sum of the integer m and the nonnegative integer n. 
 Sm(0) = m, Sm(1) = m+1, Sm(2) = m+2 = (m+1)+1, … 
 Recursive Definition:  Sm(0) = m,  Sm(n) = Sm(n-1) + 1 for n ≥ 1. 
 
12- fn is the nth Fibonacci number. 
 Show f1 

2 + f2 
2 + … + fn 

2 = fn fn+1  (using induction). 
 Let P(n) be the statement “f1 

2 + f2 
2 + … + fn 

2 = fn fn+1”. 
 Basis Step: P(1) is true because f1 

2 = f1 f1 = f1 f2 since f1 = f2 = 1. 
 Inductive Hypothesis: Assume P(n) is true, i.e. f1 

2 + f2 
2 + … + fn 

2 = fn fn+1 
 Inductive Step: Show that P(n+1) is true, i.e. f1 

2 + f2 
2 + … + fn 

2 + fn+1 
2 = fn+1 fn+2 

    P(n+1) = f1 
2 + f2 

2 + … + fn 
2 + fn+1 

2 
      = P(n) + fn+1 

2 
      = fn fn+1 + fn+1 

2        (by inductive hypothesis) 
      = fn+1 ( fn + fn+1 ) 
      = fn+1  fn+2          (by Fibonacci formula) 
 Thus, f1 

2 + f2 
2 + … + fn 

2 = fn fn+1 is true for all n ≥ 1. 
 
22 - Let A be the set of positive integers. We will show that S = A. We will show that A 

⊆ S and S ⊆ A. 
 

We will first show that A is a subset of S. 
Let P(n) be the statement that n belongs to S, where n is an element in A. 
 
Basis Step: n = 1, true since 1 ∈ S 
 
Hypothesis: Suppose P(k) is true, i.e. k ∈ S 
 
Inductive Step: Show that P(k + 1) is true. 
 
P(k + 1) is true if (k + 1) ∈ S, but k + 1 = (k) + (1), where k ∈ S and 
1 ∈ S and thus (k + 1) ∈ S. 
P(n) is true and A ⊆ A. 
 



To show that S ⊆ A, we'll show that the base step of S is in A and elements 
generated by the recursive formula are in A as well, i.e. (s + t) ∈ A whenever s ∈ S 
and t ∈ S. 
1 ∈ A, since 1 is a positive integer. 
 
Let s, t ∈ S; s and t are positive integers and their sum s + t = k is positive. Since k is 
a positive integer, then k ∈ A, (A is the set of all positive integers). 
 
Therfeore, A = S. 

 
24- a) the set of odd positive integers: set S 
     1 ∈ S, and if x ∈ S then x+2 ∈ S. 
 

b) the set of positive integer powers of 3: set S 
     1=30 ∈ S, and if x ∈ S then 3x ∈ S 
 

c) the set of polynomials with integer coefficients: set S 
c0 x0 ∈ S, and if c0 x0 + c1  x1 +…+ cn xn ∈ S  
then c0 x0 + c1  x1 +…+ cn xn + cn+1 xn+1 ∈ S 
where ci ∈ N, i ≥ 0 

 
26- S is the subset of the set of ordered pairs of integers defined recursively by  
  Basis Step: (0,0) ∈ S. 
  Recursive Step: If (a,b) ∈ S, then (a+2,b+3) ∈ S and (a+3,b+2) ∈ S. 
 a)  (2,3) , (3,2) ; (4,6) , (5,5) , (6, 4) ; (6,9) , (7,8) , (8,7) , (9,6);  

(8,12) , (9,11) , (10,10) , (11,9) , (12,8) ; (10,15) , (11,14) , (12,13) , (13,12) , 
(14,11) , (15,10). 

 
b)  Let P(n) be the statement that 5 divides a+b whenever (a,b) ∈ S is obtained by  
     n applications of the recursive step. 

Basis Step:  P(0) is true because 5 divides 0+0 and (0,0) ∈ S obtained with 0  
steps of the recursion. 

Inductive Step: Assume P(k) is true, i.e. 5 divides a+b whenever (a,b) ∈ S is  
 obtained by k or less applications of the recursive step. 
 Show P(k+1) is true, i.e. it’s valid for an element obtained with    
 k+1 applications of the recursion. 

So 5 divides a+b (which is obtained by fewer iterations), and applying the 
final recursive step results in (a+2,b+3) and (a+3,b+2). 
Case 1: a+2 + b+3 = a+b +5 = (a+b) +5 divisible by 5. 
Case 1: a+3 + b+2 = a+b +5 = (a+b) +5 divisible by 5. 

  
32- a)  ones(s) : counts the number of ones in a bit string s. 
      Let x be a single bit, i.e. x ∈ {0,1}. Let s be a bit string, i.e. s ∈ {0,1}*. 

      ones(x) = 
⎩
⎨
⎧

=
=

10
11

xif
xif

 



     Then, s = tx       where t is also a bit string, and |t| = |s|-1. 
     So, ones(s) = ones(t x) = ones(t) + ones(x). 

 
50- A(1,n) = 2n  for n ≥ 1. 
        Let P(n) be the statement “A(1,n) = 2n ” for n ≥ 1. 
       Basis Step: P(1) is true because A(1,1) = 2     according to Ackermann’s function 
    and    A(1,1)  = 21 = 2    according to P(1) 
        

Inductive Step: Assume P(k) is true for k ≥ 1, i.e. A(1,k) = 2k 
           Show that P(k+1) is true, i.e. A(1,k+1) = 2k+1 
      A(1,k+1) = A(0, A(1,k))   according to Ackermann’s function – rule 4 
           = A(0,2k)   according to induction hypothesis 
           = 2 (2k)   according to Ackermann’s function – rule 1 
           = 2k+1 

Thus, using the basis step and the inductive step, and by the principle of 
mathematical induction, A(1,n) = 2n  for n ≥ 1. 

 
 
Section 3.1 
 
 
4- procedure maxDiff  (a1, a2, …, an: integers) 
 diff := 0 
 maxDiff := 0 
 for i := 1 to n-1 
      diff := ai – ai+1 
      if absValue (diff) > maxDiff 
  then maxDiff := absValue (diff) 
 {maxDiff has the desired value} 
 
6- procedure numNegative  (a1, a2, …, an: integers) 
 count := 0 
 for i := 1 to n 
      if ai < 0 then count := count + 1 
 {count has the desired value} 
 
 
10- procedure powerNonNeg  (x: real; n: positive integer) 
 power := 1  
 for i := 1 to n 
      power := power × x 
 {power has the desired value, and this is a subprocedure being called by another} 
 

procedure power  (x:real; n: integer) 
 power := powerNonNeg (x, absValue(n)) 
 if n < 0 then power := 1 / power 



 {power has the desired value, for all negative and nonnegative powers} 
 
18- procedure lastSmallest  (a1, a2, …, an: integers) 
 smallest := a1  
 smallestLoc := 1 
 for i := 2 to n 
      if ai ≤ smallest then  

     begin  
smallest := ai 
smallestLoc := i 

       end 
 {smallestLoc has the desired value} 
 
 
32- procedure greaterTerms  (s1, s2, …, sn: integers) 
 sum := s1 
 termList := {} 
 for i := 2 to n 
      if ai > sum then termList := termList ∪ si 
      sum := sum + si 
 {termList has the desired set} 
 
34 - The lists obtained at each step are: 

i = 1; j = 1; (2; 6; 3; 1; 5; 4) 
i = 1; j = 2; (2; 3; 6; 1; 5; 4) 
i = 1; j = 3; (2; 3; 1; 6; 5; 4) 
i = 1; j = 4; (2; 3; 1; 5; 6; 4) 
i = 1; j = 5; (2; 3; 1; 5; 4; 6) 
i = 2; j = 1; (2; 3; 1; 5; 4; 6) 
i = 2; j = 2; (2; 1; 3; 5; 4; 6) 
i = 2; j = 3; (2; 1; 3; 5; 4; 6) 
i = 2; j = 4; (2; 1; 3; 4; 5; 6) 
i = 3; j = 1; (1; 2; 3; 4; 5; 6) 
i = 3; j = 2; (1; 2; 3; 4; 5; 6) 
i = 3; j = 3; (1; 2; 3; 4; 5; 6) 
i = 4; j = 1; (1; 2; 3; 4; 5; 6) 
i = 4; j = 2; (1; 2; 3; 4; 5; 6) 
i = 5; j = 1; (1; 2; 3; 4; 5; 6) 


