CMPS 211
Fall 2010

Assignment 11 - Solution

Section 4.1

n(n+1) ?
4- P(n):13+23+33+....+n3:[—J

2
2
a) P(1):1°= (—1(“1)]
2
2 2
b) (Mj = [Ej =1°=1="1° = P(1)is true.
2 2
n(n+1) ?
¢) Inductive Hypothesis: 1> + 23+ 3*+ ... + n= [ 5 j

d) Assuming the inductive hypothesis in (c), need to show that

2
P+22+3+ . +n’+ (n+1)’= [—(n+1)2(n+2)j

e) 1¥+2°+3%+ ... +n®+ (n+1)°

2
= (@j + (n+1)® by inductive hypothesis

= (n+1)? Hg]g +(n +1)} = (n+1)? (%]

2 2
= (1Y [(n +22) J _ ((n +1)(n+ 2))
2 2
f) By completing the basis step and the inductive step, we’ve shown that this
statement is true for all positive integers n.

1L.11+221+ ... +nnl = (n+1)! -1
Basis step: 1.1 = 1 (1+1)1-1=21-1=2-1=1
= 1.11 = (1+1)! - 1.
Inductive Hypothesis: 1-1! + 2.2 + ... +n-n! = (n+1)! - 1
Inductive Step: Show that 1-1! + 2.2! + .... +n-n! + (n+1)-(n+1)! = (n+2)!1 -1 ?
111+ 221+ ..., +n-:n! + (n+1)-(n+1)! = (n+1)! - 1 + (n+1)-(n+1)!
= (n+1)! [1+(n+1)] -1
= (n+tD)!'(n+2)-1 = (n+2)!-1



10- a) Formula for ! + +..+
1.2 2-3 n(n+1)

Forn=1: i:1
1.2 2
Forn=2: L, .14z
1.2 23 2 6 6 3
1 1 1 1 1 1 9 3
Forn=3: + + =—t—t —=—=—
1.2 2-3 34 2 6 12 12 4
1 1 1 n
For positive integersn: —+ —+...+ =
1.2 2.3 nn+1) n+1
b) Show ! + ..+ ! ="
1.2 2-3 nn+1) n+1
Basis Step: shown in part (a) above forn =1
Inductive Hypothesis: 1 + +..+ ! ="
1.2 2-3 nn+1) n+1
Inductive Step: Show i+ ! +..+ 1 + L -+l
1.2 2.3 nin+1) (M+)(n+2) n+2
1 1 1 1 n 1
—— 4.+ + = +
1.2 2-3 nn+l) M+H(n+2) n+l (+)(h+2)
_n(n+2)+1 _on*+2n+1
(n+)(n+2) (n+)(n+2)
(n+1)? _n+1
(n+D)(n+2) n+2

16 - 1.2:3+ 2:3-4 4.+ n(n+1)(n+2)= 2EFDO+2)(n+3)

Basis Step: true for n=1, P(1) true, 1-2-3=

1(1+1)(1+2)(1+3) 6=6

Inductive Step: Suppose that P(K) is true, k > 0
1.2.3_'_ 2'3'4+...+ k(k+1)(k+2): k(k+1)(k+2)(k+3)

4

Show that P(k+1) is true

1.2:3+ 2:3:4+...+ k(k+1)(k+2) + (k+1)(k+2)(k+3)
“MUADEADEHS) | (k+1)(k+2)(k+3) (by inductive hypothesis)
=(k+1)(k+2)(k+3) [‘—‘ + 1]

=(k+D)(k+2)(k+3) [ 7]




:(k+ 1)(k+2)(k+3)(k+4)

" as required.
Therefore, P(k+1) true.

And 1-2-3+ 2-3-4+..+ n(n+1)(n+2)= “(““XTZ)(“”) , n>0.

22. We will show using mathematical induction that n? < n! for all n > 4
since 1t 1s not true for n = 2. and n = 3 but true for n =0 and n =1
Basis Step: (n = 4)

42 =16 < 24 = 4!

= Truc for n =4

Inductive Hypothesis: Suppose the statement 1s true for n = &k — 1
ie. (k=1)2%< (k— D for (k—1) >4

Inductive Step: Show that statement is true for n = k

le. k2 < k!

(k—1)%2 < (k= 1)! ( by inductive hypothesis)

k2 —2k+1<(k—1)!

= k% -2k < (k —1)!

= k(k—=2) < (k-1

= k*(k —2) < k(k — 1) ( multiplying both sides by &k > 1)
= 2k —2) < k!

= k* < k! ( since (k —2) > 1) as required.

Therefore, n? < n! for all n > 4.

32-  Prove that 3 divides n®+2n for all n>0.
Basis Step: (n=1)  1°+2=1+2=3 divisible by 3
= True for n=1.

Inductive Hypothesis: n®+2n is divisible by 3.
Inductive Step: Show that (n+1)*+2(n+1) is divisible by 3.
(n+1)%+2(n+1) = n®+3n?+3n+1+2n+2
n®+3n’+5n+3
(n®+2n)+3n*+3n+3
= (n® + 2n)+ 3(n*+n+1)
But (n® + 2n) is divisible by 3 by inductive hypothesis
and 3(n?+n+1) is divisible by 3 multiplied by 3
So, (n® + 2n)+ 3(n?+n+1) is divisible by 3.

= (n+1)*+2(n+1) is divisible by 3

~. 3 divides n*+2n for all n>0



Section 4.2

4- P(n): a postage of n cents can be formed using 4-cent stamps and 7-cent stamps
Show P(n) is true for all n > 18.

a) P(18):18=4+14=4.1+7-2 = True for n=18
P(19):18=12+7=43+7-1 = True for n=19
P(20): 20 = =4.5+70 = True for n=20

P(21):21= =4.0+73 = True for n=21
b) Inductive Hypothesis: P(n) is true for all 18 <n < Kk,
i.e. P(n) = 4k, + 7k, for some k;, ko >0
¢) Inductive Step: Required to prove that P(k+1) is true for k > 22.
d) Pk+l) =Pk) +1
=P(k-1) +2
=P(k-2) +3
=P(k-3) +4
But  P(k-3) istrue by inductive hypothesis
i.e. P(k=3) = 4k; + 7k, for some ky, ko >0
So P(k+1) = 4ky + 7k, + 4 = 4(ky +1) + 7k
= P(k+1) is true for all k > 22
. P(n) is true for all n> 18.



8

Possible amounts that can be formed using these gift certificates are:

25% certificates | 40% certificates | Total
1 0 25%
0 1 40%
1 1 65%
3 0 %
0 2 0%
2 1 90%
4 0 100%
1 2 106%
3 1 115%
0 3 120%
5 0 1258
2 2 1308%
4 1 140%
1 3 1458
G 0 150%
3 2 155%
0 4 160%

We claim that every amount divisible by 5 and above 140$ is available.
Let P(n) be the statement that the amounts in the table above and every amount divisible
by 5 from 140$ up to 140$+5n$ can be formed from the gift certificates.

The basis step is proved in the table above, all possible quantities under 160$ were
examined and the statement proven true for these values.

Inductive Hypothesis: Suppose that P is true for all numbers up to n, where n > 4, (P(0),
P(1), P(2), P(3),and P(4)) are proven true.

For n + 1, we need to show that 140 + 5(n + 1) can be formed from 25 and 40 dollar
certificates.

n+1 > 5 so 140+5(n+1) = 140+5n+5 = 140+5(n-4)+20+5 = 140 + 5(n - 4) + 25 but 140 +
5(n - 4) is P(n - 4) which is true by inductive hypothesis and can be formed of k; gift
certificates of the 25 dollars and k; gift certificates of the 40 dollars. So, the new quantity
resembling P(n+1) can be formed of (k; +1) gift certificates of the 25 dollars and k; gift
certificates of the 40 dollars. Thus, P(n+1) is true.

Therefore, P(n) is true for all the values claimed above.



Section 4.3

4- @) f(n+1) = f(n) - f(n-1) f(0) =f(1) = 1
f(2) = f(1)=f(0)=1-1=0
f(3)=f(2)-f(1)=0-1=-1
f(4) = f(3) - f(2) = (-1) =0 = -1
f(5) =1(4)-f3)=(-1)-(-1) =0

b) f(n+1) = f(n) f(n-1) f(0)=f(1)=1
f(2)=f(1)f(0)=(1) (1) =1
f(3)=1(2) f(1)= (1) (1) =1
f(4)=1(3)f(2)=(1) (1) =1
fG) =14 13)=1) D) =1

c) f(n+1) = f(n)* + f(n-1)* f(0)=f(1)=1
f(2) = f(1)* + f(0)° = (1)* + (1)°=1+1=2
f(3) = f(2)? + f(1)° = (2)* + (1)°=4+1=5
f(4) = f(3)* + f(2)* = (5)° + (2)* =25+ 8 = 33
f(5) = f(4)? + £(3)* = (33)* + (5)° = 1089 + 125 = 1214

d) f(n+1) = f(n)/ f(n-1) f0)=1(1)=1
f(2)=f(1)/f(0)=1/1=1
f)=1f(2)/f(1)=1/1=1
f(4)=f3)/f(2)=1/1=1
f6)=1(4)/f(3)=1/1=1

6- a) f(0)=1, f(n)=- f(n-1) forn>1
Valid: fn)=(-1)" forn>1
Proof: Basis Step:  f(1) = (-1)' =-1
Inductive Hypothesis:  f(n)=(-1)" forn>1
Inductive Step:  f(n+1)=- f(n)=-(-1)"=(-1) (-1)"=(-1)""*

d) f(0)=0,f(1)=1 f(n)=2f(n-1) forn>1
Not Valid: defined starting at n=1, but f(1) =2 f(0) =2- 0 =0 = 1.

e) f(0)=2, f(n)="f(n-1) ifnisoddandn>1
f(n) = 2 f(n-2) ifn>2
_ 24212 ifnisevenandn>0
Valid: f(n) = o
20072 if nisodd andn >0
Proof: Basis Step:  f(0)=2@?/2=21=2
f(1) =2 WD/2=21=2={(0)
20+22 jif nisevenand n>0

Inductive Hypothesis:  f(n) =
P ™ {2‘““)’2 if nisodd andn >0

Inductive Step:



e niseven= f(n)=2™?/'2—- n+1is odd
= Show f(n+1) = 2 1 D/2=p (2)/2

f(n+1) = f((n+1)-1) (by recursive definition)
= f(n) = 2(™2)/2 (by induction hypothesis) ~ True
. nisodd = f(n)=2™Y/2 = n+1iseven
= ShOW f(n+1) - 2 (n+1+2)/2 — 2 (n+3) /2
f(n+1) = 2 f((n+1)-1) (by recursive definition)
- — 9. n(*1)/2 ; ; ;
= 2222 e Jpanguction hypothesi)

10-  Sy(n) is the sum of the integer m and the nonnegative integer n.
Sm(0) =m, Sp(1) = m+1, Sp(2) = m+2 = (m+1)+1, ...
Recursive Definition: S»(0) =m, Sp(n) = Sy(n-1) + 1 forn > 1.

12-  f, is the nth Fibonacci number.
Show fy 2 + f,2 + ... + f, 2 = f, f,+1 (using induction).
Let P(n) be the statement “f; 2 + f,2 + ...+, % = f, fous”
Basis Step: P(1) is true because f; > = f, f, = f, f, since f; = f, = 1.
Inductive Hypothesis: Assume P(n) is true, i.e. fi 2 + f,2 + ... +f,% = f, foss
Inductive Step: Show that P(n+1) is true, i.e. fi 2+ f22 + ... + 1% + for1 2 = fro frez
P(n+1) =f 2+ 2+ ...+, 2+ fruy 2

= P(n) + fos1 2

= fn feg + fes 2 (by inductive hypothesis)
= foee (o + o)

= for1 o2 (by Fibonacci formula)

Thus, f; 2+ f,2 + ... +f,2 =1, f,.q is true for all n > 1.

22 - Let A be the set of positive integers. We will show that S = A. We will show that A
cSandScA.

We will first show that A is a subset of S.
Let P(n) be the statement that n belongs to S, where n is an element in A.

Basis Step: n=1, truesincel € S

Hypothesis: Suppose P(K) is true, i.e. k € S

Inductive Step: Show that P(k + 1) is true.

P(k+1)istrueif (k+1) € S, butk + 1 = (k) + (1), where k € Sand

1 e Sandthus (k+1) € S.
P(n) istrue and A C A.



24-

32-

To show that S — A, we'll show that the base step of S is in A and elements
generated by the recursive formula are in A as well, i.e. (s+t) € Awhenevers € S
andt e S.

1 € A, since 1 is a positive integer.

Lets, t € S; sand t are positive integers and their sum s + t = k is positive. Since k is
a positive integer, then k € A, (A is the set of all positive integers).

Therfeore, A =S.

a) the set of odd positive integers: set S
1le S andifx e Sthenx+2 € S.

b) the set of positive integer powers of 3: set S
1=3° e S,and if x e Sthen 3x € S

c) the set of polynomials with integer coefficients: set S
cox’e S, andifcox’+cy xt+...+cox"e S
then co X2+ ¢y X +...+ Co X"+ Coa X" € S
wherecie N,i>0

S is the subset of the set of ordered pairs of integers defined recursively by
Basis Step: (0,0) € S.
Recursive Step: If (a,b) € S, then (a+2,b+3) € S and (a+3,b+2) € S.
a) (2,3),(3.2);(46),(55),(6,4);(6.9),(7.8),(87),(9.6);
(8,12), (9,11) , (10,10), (11,9, (12,8) ; (10,15) , (11,14) , (12,13), (13,12) ,
(14,11) , (15,10).

b) Let P(n) be the statement that 5 divides a+b whenever (a,b) € S is obtained by
n applications of the recursive step.
Basis Step: P(0) is true because 5 divides 0+0 and (0,0) e S obtained with 0
steps of the recursion.
Inductive Step: Assume P(K) is true, i.e. 5 divides a+b whenever (a,b) € S is
obtained by k or less applications of the recursive step.
Show P(k+1) is true, i.e. it’s valid for an element obtained with
k+1 applications of the recursion.
So 5 divides a+b (which is obtained by fewer iterations), and applying the
final recursive step results in (a+2,b+3) and (a+3,b+2).
Case 1: a+2 + b+3 = at+b +5 = (a+b) +5 divisible by 5.
Case 1: a+3 + b+2 = a+b +5 = (a+b) +5 divisible by 5.

a) ones(s) : counts the number of ones in a bit string s.
Let x be a single bit, i.e. x € {0,1}. Let s be a bit string, i.e. s € {0,1}*.

1 if x=1
onest)= 10 it x=1



Then, s = tx where t is also a bit string, and |t| = |s|-1.
So, ones(s) = ones(t x) = ones(t) + ones(x).

50- A(l,n)=2" forn=>1.
Let P(n) be the statement “A(1,n) = 2" forn > 1.
Basis Step: P(1) is true because A(1,1) = 2 according to Ackermann’s function
and A(1,1) =2'=2 according to P(1)
Inductive Step: Assume P(k) is true for k > 1, i.e. A(1,k) = 2
Show that P(k+1) is true, i.e. A(1,k+1) = 2**
A(1,k+1) = A0, A(1,k)) according to Ackermann’s function — rule 4
= A(0,2% according to induction hypothesis
= 2k(21") according to Ackermann’s function — rule 1
=2 +
Thus, using the basis step and the inductive step, and by the principle of
mathematical induction, A(1,n) =2" forn > 1.
Section 3.1
4- procedure maxDiff (aj, ay, ..., an: integers)
diff:=0
maxDiff := 0
fori:=1ton-1
diff := aj — aj+1
if absValue (diff) > maxDiff
then maxDiff := absValue (diff)
{maxDiff has the desired value}
6- procedure numNegative (aj, ay, ..., & integers)
count:=0
fori:=1ton
if a; <0 then count := count + 1
{count has the desired value}
10-  procedure powerNonNeg (x: real; n: positive integer)

power ;=1
fori:=1ton
pOWer := power x X
{power has the desired value, and this is a subprocedure being called by another}

procedure power (x:real; n: integer)
power := powerNonNeg (X, absValue(n))
if n <0 then power := 1/ power



{power has the desired value, for all negative and nonnegative powers}

18-  procedure lastSmallest (ai, a,, ..., an: integers)
smallest := a;
smallestLoc :=1
fori:=2ton
if a; < smallest then
begin
smallest := g
smallestLoc ;=i
end
{smallestLoc has the desired value}

32-  procedure greaterTerms (Sg, Sy, ..., Sn: integers)

sum:=s;
termList := {}
fori:=2ton

if a; > sum then termList := termList U s;
sum :=sum + S
{termList has the desired set}

34 - The lists obtained at each step are:
1=1;)=1;(2;6;3;1;5;4)

i=1;j=2;(2;3;6;1;5;4)
i=1;)=3;(2;3;1;6;5;4)
i=1;)=4;(2;3;1;5;6;4)
1=1;)=5;(2;3;1;5;4;6)
1=2;)=1;(2;3;1;5;4;6)
1=2;]=2;(2;1;3;5; 4;6)
1=2;]=3;(2;1; 3;5; 4, 6)
1=2;]=4;(2;1;3;4;5;6)
i=3;)=1;(1;2;3;4;5;6)
1=3;)=2;(1;2;3;4;5;6)
1=3;)=3;(1;2;3;4;5;6)
1=4;)=1;(1;2; 3;4;5;6)
1=4;]=2;(1;2;3; 4,5, 6)
1=5;]=1;(1; 2; 3; 4,5, 6)



