CMPS 211 Fall 2010

Assignment II - Solution

Section 4.1

4.
$$P(n): 1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$
a) $P(I): 1^{3} = \left(\frac{1(1+1)}{2}\right)^{2}$
b) $\left(\frac{1(1+1)}{2}\right)^{2} = \left(\frac{2}{2}\right)^{2} = 1^{2} = 1 = 1^{3} \implies P(I)$ is true.
c) Inductive Hypothesis: $1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$
d) Assuming the inductive hypothesis in (c), need to show that
 $1^{3} + 2^{3} + 3^{3} + \dots + n^{3} + (n+1)^{3} = \left(\frac{(n+1)(n+2)}{2}\right)^{2}$
e) $1^{3} + 2^{3} + 3^{3} + \dots + n^{3} + (n+1)^{3}$
 $= \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$ by inductive hypothesis
 $= (n+1)^{2} \left[\left(\frac{n}{2}\right)^{2} + (n+1)\right] = (n+1)^{2} \left(\frac{n^{2} + 4n + 4}{2^{2}}\right)$
 $= (n+1)^{2} \left(\frac{(n+2)^{2}}{2^{2}}\right) = \left(\frac{(n+1)(n+2)}{2}\right)^{2}$

- f) By completing the basis step and the inductive step, we've shown that this statement is true for all positive integers n.
- 6- $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! 1$ Basis step: $1 \cdot 1! = 1$ (1+1)! - 1 = 2! - 1 = 2 - 1 = 1 $\Rightarrow 1 \cdot 1! = (1+1)! - 1.$ Inductive Hypothesis: $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$ Inductive Step: Show that $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! + (n+1) \cdot (n+1)! = (n+2)! - 1$? $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! + (n+1) \cdot (n+1)! = (n+1)! - 1 + (n+1) \cdot (n+1)!$ = (n+1)! [1+(n+1)] - 1= (n+1)! [1+(n+1)] - 1

10- a) Formula for
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{n(n+1)}$$

For $n = 1$: $\frac{1}{1\cdot 2} = \frac{1}{2}$
For $n = 2$: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} = \frac{1}{2} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$
For $n = 3$: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4}$
For positive integers n : $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{n(n+1)} = \frac{n}{n+1}$
b) Show $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{n(n+1)} = \frac{n}{n+1}$
Basis Step: shown in part (a) above for $n = 1$
Inductive Hypothesis: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{n(n+1)} = \frac{n}{n+1}$
Inductive Step: Show $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$
 $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + ... + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$
 $= \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2 + 2n + 1}{(n+1)(n+2)}$
 $= \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2}$

16 - $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$ Basis Step: true for n=1, P(1) true, $1 \cdot 2 \cdot 3 = \frac{1(1+1)(1+2)(1+3)}{4}$, 6 = 6

Inductive Step: Suppose that P(k) is true, k > 01·2·3+ 2·3·4+...+ k(k+1)(k+2)= $\frac{k(k+1)(k+2)(k+3)}{4}$

Show that P(k+1) is true

$$\frac{1\cdot 2\cdot 3+2\cdot 3\cdot 4+...+k(k+1)(k+2)+(k+1)(k+2)(k+3)}{4} = \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3) \text{ (by inductive hypothesis)}$$
$$= (k+1)(k+2)(k+3)\left[\frac{k}{4}+1\right]$$
$$= (k+1)(k+2)(k+3)\left[\frac{k+4}{4}\right]$$

 $\frac{(k+1)(k+2)(k+3)(k+4)}{4}$ as required.

Therefore, P(k+1) true.

And $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + ... + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$, n>0.

22. We will show using mathematical induction that $n^2 \leq n!$ for all $n \geq 4$ since it is not true for n = 2, and n = 3 but true for n = 0 and n = 1

Basis Step: (n = 4) $4^2 = 16 \le 24 = 4!$ \Rightarrow True for n = 4

Inductive Hypothesis: Suppose the statement is true for n = k - 1i.e. $(k - 1)^2 \le (k - 1)!$ for $(k - 1) \ge 4$

Inductive Step: Show that statement is true for n = k i.e. $k^2 \le k!$

 $\begin{aligned} &(k-1)^2 \leq (k-1)! \text{ (by inductive hypothesis)} \\ &k^2 - 2k + 1 \leq (k-1)! \\ &\Rightarrow k^2 - 2k \leq (k-1)! \\ &\Rightarrow k(k-2) \leq (k-1)! \\ &\Rightarrow k^2(k-2) \leq k(k-1) \text{ (multiplying both sides by } k > 1) \\ &\Rightarrow k^2(k-2) \leq k! \\ &\Rightarrow k^2 \leq k! \text{ (since } (k-2) > 1) \text{ as required.} \end{aligned}$ Therefore, $n^2 < n!$ for all n > 4.

Prove that 3 divides $n^3 + 2n$ for all n > 0. 32-Basis Step: (*n*=1) $1^{3}+2 = 1+2 = 3$ divisible by 3 \Rightarrow True for *n*=1. Inductive Hypothesis: n^3+2n is divisible by 3. Inductive Step: Show that $(n+1)^3+2(n+1)$ is divisible by 3. $(n+1)^{3}+2(n+1) = n^{3} + 3n^{2} + 3n + 1 + 2n + 2$ $= n^3 + 3n^2 + 5n + 3$ $= (n^3 + 2n) + 3n^2 + 3n + 3$ $= (n^3 + 2n) + 3(n^2 + n + 1)$ But $(n^3 + 2n)$ is divisible by 3 by inductive hypothesis and $3(n^2+n+1)$ is divisible by 3 multiplied by 3 So, $(n^3 + 2n) + 3(n^2 + n + 1)$ is divisible by 3. \Rightarrow $(n+1)^3+2(n+1)$ is divisible by 3 \therefore 3 divides $n^3 + 2n$ for all n > 0

Section 4.2

4-P(n): a postage of *n* cents can be formed using 4-cent stamps and 7-cent stamps Show P(n) is true for all $n \ge 18$. a) $P(18): 18 = 4 + 14 = 4 \cdot 1 + 7 \cdot 2$ True for *n*=18 \Rightarrow $P(19): 18 = 12 + 7 = 4 \cdot 3 + 7 \cdot 1$ True for *n*=19 \Rightarrow P(20): 20 == 4.5 + 7.0 \Rightarrow True for *n*=20 P(21): 21 == 4.0 + 7.3 \Rightarrow True for *n*=21 b) Inductive Hypothesis: P(n) is true for all $18 \le n \le k$, i.e. $P(n) = 4k_1 + 7k_2$ for some $k_1, k_2 \ge 0$ c) Inductive Step: Required to prove that P(k+1) is true for $k \ge 22$. d) P(k+1) = P(k) + 1= P(k-1) + 2= P(k-2) + 3= P(k-3) + 4P(k-3) is true by inductive hypothesis But i.e. $P(k-3) = 4k_1 + 7k_2$ for some $k_1, k_2 \ge 0$ $P(k+1) = 4k_1 + 7k_2 + 4 = 4(k_1+1) + 7k_2$ So $\Rightarrow P(k+1)$ is true for all $k \ge 22$ \therefore *P*(*n*) is true for all $n \ge 18$.

8.

Possible amounts that can be formed using these gift certificates are:

25 certificates	40\$ certificates	Total
1	.0	25\$
0	1	40\$
1	1	65\$
3	0	75\$
0	2	80\$
2	1	90\$
4	0	100\$
1	2	105\$
3	1	115\$
0	3	120\$
5	0	125\$
2	2	130\$
4	1	140\$
1	3	145\$
6	0	150\$
3	2	155\$
0	4	160\$

We claim that every amount divisible by 5 and above 140\$ is available.

Let P(n) be the statement that the amounts in the table above and every amount divisible by 5 from 140\$ up to 140\$+5n\$ can be formed from the gift certificates.

The basis step is proved in the table above, all possible quantities under 160\$ were examined and the statement proven true for these values.

Inductive Hypothesis: Suppose that P is true for all numbers up to n, where n > 4, (P(0), P(1), P(2), P(3), and P(4)) are proven true.

For n + 1, we need to show that 140 + 5(n + 1) can be formed from 25 and 40 dollar certificates.

n+1 > 5 so 140+5(n+1) = 140+5n+5 = 140+5(n-4)+20+5 = 140 + 5(n-4) + 25 but 140 + 5(n-4) is P(n - 4) which is true by inductive hypothesis and can be formed of k_1 gift certificates of the 25 dollars and k_2 gift certificates of the 40 dollars. So, the new quantity resembling P(n+1) can be formed of $(k_1 + 1)$ gift certificates of the 25 dollars and k_2 gift certificates of the 25 dollars and k_2 gift certificates of the 25 dollars. So, the new quantity certificates of the 40 dollars. Thus, P(n+1) is true.

Therefore, P(n) is true for all the values claimed above.

Section 4.3

4-	a) $f(n+1) = f(0)$ f(2) = f(1) f(3) = f(2) f(4) = f(3) f(5) = f(4)	f(n) - f(n-1) - f(0) = 1 - 1 - f(1) = 0 - 1 - f(2) = (-1) f(3) = (-1) -	= 0 = -1 0 = -1 (-1) = 0		f(0) = f(1) =	1
	b) $f(n+1) = f(1)$ f(2) = f(1) f(3) = f(2) f(4) = f(3) f(5) = f(4)	f(n) f(n-1) f(0) = (1) (1) = f(1) = (1) (1) = f(2) = (1) (1) = f(3) = (1) (1) =	= 1 = 1 = 1 = 1		f(0) = f(1) =	1
	c) $f(n+1) = f(1)^{2}$ $f(2) = f(1)^{2}$ $f(3) = f(2)^{2}$ $f(4) = f(3)^{2}$ $f(5) = f(4)^{2}$		$+ (1)^{3} = 1 - $ + (1)^{3} = 4 - + (2)^{3} = 25 - $+ (5)^{3} = 1 - $	+ 1 = 2 + 1 = 5 + 8 = 33 089 + 12	f(0) = f(1) = 5 = 1214	1
	d) $f(n+1) = f(1)$ f(2) = f(1) f(3) = f(2) f(4) = f(3) f(5) = f(4)	f(n) / f(n-1) / f(0) = 1 / 1 = / f(1) = 1 / 1 = / f(2) = 1 / 1 = / f(3) = 1 / 1 =	= 1 = 1 = 1 = 1		f(0) = f(1) =	1
6-	a) $f(0) = 1$, Valid: Proof: Inductive In	$f(n) = - f(n-1)^n$ $f(n) = (-1)^n$ Basis Step: Hypothesis: ductive Step:	1) for $n \ge 1$ for $n \ge 1$ f(1) = (-1) f(n) = (-1) f(n) = (-1)		r <i>n</i> ≥ 1 - (- 1) ^{<i>n</i>} = (- 1) (-	$(-1)^n = (-1)^{n+1}$
	d) $f(0) = 0, f(0)$ Not Valid:	f(n) = 1 $f(n) = 1$ defined starting	= 2 <i>f</i> (<i>n</i> -1) f ng at <i>n</i> =1, b	for $n \ge 1$ ut $f(1) = 1$	$2f(0) = 2 \cdot 0 = 0 \neq$	1.
	e) $f(0) = 2$,	f(n) = f(n-1) f(n) = 2 f(n-2)	if 2) if	n is odd $n \ge 2$	and $n \ge 1$	
	Valid:	$f(n) = \begin{cases} 2^{(n+2)} \\ 2^{(n+1)} \end{cases}$) ⁷² if n i) ⁷² if n i	s even an s odd an	$d n \ge 0$ $d n \ge 0$	
	Proof:	Basis Step:	$f(0) = 2^{(0)}$ $f(1) = 2^{(1)}$	(0+2)/2 = 2 (1+1)/2 = 2	$2^{l} = 2$ $2^{l} = 2 = f(0)$	
	Inductive	Hypothesis:	$f(n) = \begin{cases} 2 \\ 2 \end{cases}$	(n+2)/2 (n+1)/2	if n is even and r	$n \ge 0$
	Inductive	Step:	(2			

•
$$n ext{ is even} \Rightarrow f(n) = 2^{(n+2)/2} \Rightarrow n+1 ext{ is odd}$$

 $\Rightarrow ext{Show } f(n+1) = 2^{(n+1+1)/2} = 2^{(n+2)/2}$
 $f(n+1) = f((n+1)-1)$ (by recursive definition)
 $= f(n) = 2^{(n+2)/2}$ (by induction hypothesis) **True**
• $n ext{ is odd } \Rightarrow f(n) = 2^{(n+1)/2} \Rightarrow n+1 ext{ is even}$
 $\Rightarrow ext{Show } f(n+1) = 2^{(n+1+2)/2} = 2^{(n+3)/2}$
 $f(n+1) = 2 f((n+1)-1)$ (by recursive definition)
 $= 2 f(n) = 2 \cdot 2^{(n+1)/2}$ (by induction hypothesis)
 $= 2^{(n+1)/2+1} = 2^{(n+1+2)/2} = 2^{(n+3)/2}$ **True**

- **10-** $S_m(n)$ is the sum of the integer *m* and the nonnegative integer *n*. $S_m(0) = m, S_m(1) = m+1, S_m(2) = m+2 = (m+1)+1, \dots$ Recursive Definition: $S_m(0) = m, S_m(n) = S_m(n-1) + 1$ for $n \ge 1$.
- 12- f_n is the *n*th Fibonacci number. Show $f_1^2 + f_2^2 + ... + f_n^2 = f_n f_{n+1}$ (using induction). Let P(n) be the statement " $f_1^2 + f_2^2 + ... + f_n^2 = f_n f_{n+1}$ ". Basis Step: P(1) is true because $f_1^2 = f_1 f_1 = f_1 f_2$ since $f_1 = f_2 = 1$. Inductive Hypothesis: Assume P(n) is true, i.e. $f_1^2 + f_2^2 + ... + f_n^2 = f_n f_{n+1}$ Inductive Step: Show that P(n+1) is true, i.e. $f_1^2 + f_2^2 + ... + f_n^2 + f_{n+1}^2 = f_{n+1} f_{n+2}$ $P(n+1) = f_1^2 + f_2^2 + ... + f_n^2 + f_{n+1}^2$ $= f_n f_{n+1} + f_{n+1}^2$ (by inductive hypothesis) $= f_{n+1} (f_n + f_{n+1})$ $= f_{n+1} f_{n+2}$ (by Fibonacci formula) Thus, $f_1^2 + f_2^2 + ... + f_n^2 = f_n f_{n+1}$ is true for all $n \ge 1$.
- 22 Let A be the set of positive integers. We will show that S = A. We will show that A $\subseteq S$ and $S \subseteq A$.

We will first show that A is a subset of S. Let P(n) be the statement that n belongs to S, where n is an element in A.

Basis Step: n = 1, true since $1 \in S$

Hypothesis: Suppose P(k) is true, i.e. $k \in S$

Inductive Step: Show that P(k + 1) is true.

P(k + 1) is true if $(k + 1) \in S$, but k + 1 = (k) + (1), where $k \in S$ and $1 \in S$ and thus $(k + 1) \in S$. P(n) is true and $A \subseteq A$. To show that $S \subseteq A$, we'll show that the base step of S is in A and elements generated by the recursive formula are in A as well, i.e. $(s + t) \in A$ whenever $s \in S$ and $t \in S$.

 $1 \in A$, since 1 is a positive integer.

Let s, $t \in S$; s and t are positive integers and their sum s + t = k is positive. Since k is a positive integer, then $k \in A$, (A is the set of all positive integers).

Therfeore, A = S.

- **24** a) the set of odd positive integers: set *S* $1 \in S$, and if $x \in S$ then $x+2 \in S$.
 - b) the set of positive integer powers of 3: set S $1=3^{\circ} \in S$, and if $x \in S$ then $3x \in S$
 - c) the set of polynomials with integer coefficients: set S $c_0 x^0 \in S$, and if $c_0 x^0 + c_1 x^1 + \ldots + c_n x^n \in S$ then $c_0 x^0 + c_1 x^1 + \ldots + c_n x^n + c_{n+1} x^{n+1} \in S$ where $c_i \in \mathbb{N}, i \ge 0$

26- S is the subset of the set of ordered pairs of integers defined recursively by Basis Step: $(0,0) \in S$. Recursive Step: If $(a,b) \in S$, then $(a+2,b+3) \in S$ and $(a+3,b+2) \in S$.

- a) (2,3), (3,2); (4,6), (5,5), (6,4); (6,9), (7,8), (8,7), (9,6); (8,12), (9,11), (10,10), (11,9), (12,8); (10,15), (11,14), (12,13), (13,12), (14,11), (15,10).
- b) Let P(n) be the statement that 5 divides a+b whenever $(a,b) \in S$ is obtained by n applications of the recursive step.

Basis Step: P(0) is true because 5 divides 0+0 and $(0,0) \in S$ obtained with 0 steps of the recursion.

Inductive Step: Assume P(k) is true, i.e. 5 divides a+b whenever $(a,b) \in S$ is obtained by k or less applications of the recursive step. Show P(k+1) is true, i.e. it's valid for an element obtained with k+1 applications of the recursion.

So 5 divides a+b (which is obtained by fewer iterations), and applying the final recursive step results in (a+2,b+3) and (a+3,b+2). *Case 1*: a+2+b+3 = a+b+5 = (a+b)+5 divisible by 5.

Case 1: a+3 + b+2 = a+b+5 = (a+b)+5 divisible by 5.

32- a) *ones*(*s*) : counts the number of ones in a bit string *s*.

Let *x* be a single bit, i.e. $x \in \{0,1\}$. Let *s* be a bit string, i.e. $s \in \{0,1\}^*$.

 $ones(x) = \begin{cases} 1 & if \ x = 1 \\ 0 & if \ x = 1 \end{cases}$

Then, s = tx where *t* is also a bit string, and |t| = |s|-1. So, ones(s) = ones(t x) = ones(t) + ones(x).

50- $A(1,n) = 2^n$ for $n \ge 1$. Let P(n) be the statement " $A(1,n) = 2^n$ " for $n \ge 1$. Basis Step: P(1) is true because A(1,1) = 2 according to Ackermann's function and $A(1,1) = 2^1 = 2$ according to P(1)

Inductive Step: Assume P(k) is true for $k \ge 1$, i.e. $A(1,k) = 2^k$
Show that P(k+1) is true, i.e. $A(1,k+1) = 2^{k+1}$ A(1,k+1) = A(0, A(1,k))according to Ackermann's function – rule 4
according to induction hypothesis
 $= 2 (2^k)$
 $= 2^{k+1}$

Thus, using the basis step and the inductive step, and by the principle of mathematical induction, $A(1,n) = 2^n$ for $n \ge 1$.

Section 3.1

```
4- procedure maxDiff (a_1, a_2, ..., a_n: integers)

diff := 0

maxDiff := 0

for i := 1 to n-1

diff := a_i - a_{i+1}

if absValue (diff) > maxDiff

then maxDiff := absValue (diff)

{maxDiff has the desired value}
```

```
6- procedure numNegative (a_1, a_2, ..., a_n: integers)

count := 0

for i := 1 to n

if a_i < 0 then count := count + 1

{count has the desired value}
```

```
10- procedure powerNonNeg (x: real; n: positive integer)
    power := 1
    for i := 1 to n
        power := power × x
        {power has the desired value, and this is a subprocedure being called by another}
```

procedure power (x:real; n: integer)
power := powerNonNeg (x, absValue(n))
if n < 0 then power := 1 / power</pre>

{power has the desired value, for all negative and nonnegative powers}

```
18- procedure lastSmallest (a_1, a_2, ..., a_n: integers)

smallest := a_1

smallestLoc := 1

for i := 2 to n

if a_i \le smallest then

begin

smallest := a_i

smallestLoc := i

end

{smallestLoc has the desired value}
```

- **32- procedure** greaterTerms $(s_1, s_2, ..., s_n: integers)$ sum := s_1 termList := {} **for** i := 2 to n **if** $a_i > sum$ **then** termList := termList $\cup s_i$ sum := sum + s_i {termList has the desired set}
- **34** The lists obtained at each step are:

$$i = 1; j = 1; (2; 6; 3; 1; 5; 4)$$

$$i = 1; j = 2; (2; 3; 6; 1; 5; 4)$$

$$i = 1; j = 3; (2; 3; 1; 6; 5; 4)$$

$$i = 1; j = 4; (2; 3; 1; 5; 6; 4)$$

$$i = 1; j = 5; (2; 3; 1; 5; 4; 6)$$

$$i = 2; j = 1; (2; 3; 1; 5; 4; 6)$$

$$i = 2; j = 2; (2; 1; 3; 5; 4; 6)$$

$$i = 2; j = 3; (2; 1; 3; 5; 4; 6)$$

$$i = 2; j = 4; (2; 1; 3; 5; 4; 6)$$

$$i = 3; j = 1; (1; 2; 3; 4; 5; 6)$$

$$i = 3; j = 3; (1; 2; 3; 4; 5; 6)$$

$$i = 4; j = 1; (1; 2; 3; 4; 5; 6)$$

$$i = 5; j = 1; (1; 2; 3; 4; 5; 6)$$