CMPS 211

Fall 2010

Assignment II - Solution

Section 4.1

4- $\quad P(n): 1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
a) $P(1): 1^{3}=\left(\frac{1(1+1)}{2}\right)^{2}$
b) $\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=1^{2}=1=1^{3} \quad \Rightarrow \quad P(1)$ is true.
c) Inductive Hypothesis: $1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
d) Assuming the inductive hypothesis in (c), need to show that

$$
1^{3}+2^{3}+3^{3}+\ldots .+n^{3}+(n+1)^{3}=\left(\frac{(n+1)(n+2)}{2}\right)^{2}
$$

e) $1^{3}+2^{3}+3^{3}+\ldots .+n^{3}+(n+1)^{3}$

$$
\begin{aligned}
& =\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3} \quad \text { by ind } \\
& =(n+1)^{2}\left[\left(\frac{n}{2}\right)^{2}+(n+1)\right]=(n+1)^{2}\left(\frac{n^{2}+4 n+4}{2^{2}}\right) \\
& =(n+1)^{2}\left(\frac{(n+2)^{2}}{2^{2}}\right)=\left(\frac{(n+1)(n+2)}{2}\right)^{2}
\end{aligned}
$$

f) By completing the basis step and the inductive step, we've shown that this statement is true for all positive integers n.

6- $\quad 1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!=(n+1)!-1$
Basis step: $1 \cdot 1!=1 \quad(1+1)!-1=2!-1=2-1=1$

$$
\Rightarrow 1 \cdot 1!=(1+1)!-1
$$

Inductive Hypothesis: $1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!=(n+1)!-1$
Inductive Step: Show that $1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!+(n+1) \cdot(n+1)!=(n+2)!-1$?
$1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!+(n+1) \cdot(n+1)!=(n+1)!-1+(n+1) \cdot(n+1)!$

$$
\begin{aligned}
& =(n+1)![1+(n+1)]-1 \\
& =(n+1)!(n+2)-1=(n+2)!-1
\end{aligned}
$$

10- a) Formula for $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}$
For $n=1: \quad \frac{1}{1 \cdot 2}=\frac{1}{2}$
For $n=2: \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}=\frac{1}{2}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}$
For $n=3: \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=\frac{9}{12}=\frac{3}{4}$
For positive integers $n: \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
b) Show $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$

Basis Step: shown in part (a) above for $n=1$
Inductive Hypothesis: $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
Inductive Step: Show $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}=\frac{n+1}{n+2}$
$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}$
$=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}$
$=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}$
$16-1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
Basis Step: true for $\mathrm{n}=1, \mathrm{P}(1)$ true, $1 \cdot 2 \cdot 3=\frac{1(1+1)(1+2)(1+3)}{4}, 6=6$
Inductive Step: Suppose that $\mathrm{P}(\mathrm{k})$ is true, $\mathrm{k}>0$
$1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}$
Show that $\mathrm{P}(\mathrm{k}+1)$ is true

$$
\begin{aligned}
& 1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+k(k+1)(k+2)+(k+1)(k+2)(k+3) \\
& =\frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3)(\text { by inductive hypothesis) } \\
& =(k+1)(k+2)(k+3)\left[\frac{k}{4}+1\right] \\
& =(k+1)(k+2)(k+3)\left[\frac{k+4}{4}\right]
\end{aligned}
$$

$=\frac{(k+1)(k+2)(k+3)(k+4)}{4}$ as required.
Therefore, $\mathrm{P}(\mathrm{k}+1)$ true.
And $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}, n>0$.
22. We will show using mathematical induction that $n^{2} \leq n$! for all $n \geq 4$ since it is not true for $n=2$, and $n=3$ but true for $n=0$ and $n=1$

Basis Step: $(n=4)$
$4^{2}=16 \leq 24=4$!
\Rightarrow True for $n=4$
Inductive Hypothesis: Suppose the statement is true for $n=k-1$
i.e. $(k-1)^{2} \leq(k-1)$! for $(k-1) \geq 4$

Inductive Step: Show that statement is true for $n=k$
i.e. $k^{2} \leq k$!
$(k-1)^{2} \leq(k-1)$! (by inductive hypothesis)
$k^{2}-2 k+1 \leq(k-1)!$
$\Rightarrow k^{2}-2 k \leq(k-1)!$
$\Rightarrow k(k-2) \leq(k-1)!$
$\Rightarrow k^{2}(k-2) \leq k(k-1)$ (multiplying both sides by $k>1$)
$\Rightarrow k^{2}(k-2) \leq k!$
$\Rightarrow k^{2} \leq k!($ since $(k-2)>1)$ as required .
Therefore, $n^{2} \leq n$! for all $n \geq 4$.

32- \quad Prove that 3 divides $n^{3}+2 n$ for all $n>0$.
Basis Step: $(n=1) \quad 1^{3}+2=1+2=3$ divisible by 3 \Rightarrow True for $n=1$.
Inductive Hypothesis: $n^{3}+2 n$ is divisible by 3.
Inductive Step: Show that $(n+1)^{3}+2(n+1)$ is divisible by 3.

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =n^{3}+3 n^{2}+3 n+1+2 n+2 \\
& =n^{3}+3 n^{2}+5 n+3 \\
& =\left(n^{3}+2 n\right)+3 n^{2}+3 n+3 \\
& =\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)
\end{aligned}
$$

But $\left(n^{3}+2 n\right)$ is divisible by $3 \quad$ by inductive hypothesis and $3\left(n^{2}+n+1\right)$ is divisible by 3 multiplied by 3
So, $\left(n^{3}+2 n\right)+3\left(n^{2}+n+1\right)$ is divisible by 3 .
$\Rightarrow(n+1)^{3}+2(n+1)$ is divisible by 3
$\therefore 3$ divides $n^{3}+2 n$ for all $n>0$

Section 4.2

4- $\quad P(n)$: a postage of n cents can be formed using 4-cent stamps and 7-cent stamps Show $P(n)$ is true for all $n \geq 18$.
a) $P(18): 18=4+14=4 \cdot 1+7 \cdot 2 \quad \Rightarrow \quad$ True for $n=18$
$P(19): 18=12+7=4 \cdot 3+7 \cdot 1 \quad \Rightarrow \quad$ True for $n=19$
$P(20): 20=\quad=4 \cdot 5+7 \cdot 0 \quad$ True for $n=20$
$P(21): 21=\quad=4.0+7.3 \quad \Rightarrow \quad$ True for $n=21$
b) Inductive Hypothesis: $P(n)$ is true for all $18 \leq n \leq k$, i.e. $P(n)=4 k_{1}+7 k_{2}$ for some $k_{1}, k_{2} \geq 0$
c) Inductive Step: Required to prove that $P(k+1)$ is true for $k \geq 22$.
d) $P(k+1)=P(k)+1$
$=P(k-1)+2$
$=P(k-2)+3$
$=P(k-3)+4$
But $\quad P(k-3)$ is true by inductive hypothesis
i.e. $P(k-3)=4 k_{1}+7 k_{2}$ for some $k_{1}, k_{2} \geq 0$

So $\quad P(k+1)=4 k_{1}+7 k_{2}+4=4\left(k_{1}+1\right)+7 k_{2}$
$\Rightarrow P(k+1)$ is true for all $k \geq 22$
$\therefore P(n)$ is true for all $n \geq 18$.
8.

Possible amounts that can be formed using these gift certificates are:

$25 \$$ certificates	$40 \$$ certificates	Total
1	0	$25 \$$
0	1	$40 \$$
1	1	$65 \$$
3	0	$75 \$$
0	2	$80 \$$
2	1	$90 \$$
4	0	$100 \$$
1	2	$105 \$$
3	1	$115 \$$
0	3	$120 \$$
5	0	$125 \$$
2	2	$130 \$$
4	1	$140 \$$
1	3	$145 \$$
6	0	$150 \$$
3	2	$155 \$$
0	4	$160 \$$

We claim that every amount divisible by 5 and above $140 \$$ is available.
Let $\mathrm{P}(\mathrm{n})$ be the statement that the amounts in the table above and every amount divisible by 5 from $140 \$$ up to $140 \$+5 n \$$ can be formed from the gift certificates.

The basis step is proved in the table above, all possible quantities under 160\$ were examined and the statement proven true for these values.

Inductive Hypothesis: Suppose that P is true for all numbers up to n , where $\mathrm{n}>4,(\mathrm{P}(0)$, $\mathrm{P}(1), \mathrm{P}(2), \mathrm{P}(3)$, and $\mathrm{P}(4))$ are proven true.

For $n+1$, we need to show that $140+5(n+1)$ can be formed from 25 and 40 dollar certificates. $n+1>5$ so $140+5(n+1)=140+5 n+5=140+5(n-4)+20+5=140+5(n-4)+25$ but $140+$ $5(n-4)$ is $P(n-4)$ which is true by inductive hypothesis and can be formed of k_{1} gift certificates of the 25 dollars and k_{2} gift certificates of the 40 dollars. So, the new quantity resembling $\mathrm{P}(\mathrm{n}+1)$ can be formed of $\left(\mathrm{k}_{1}+1\right)$ gift certificates of the 25 dollars and k_{2} gift certificates of the 40 dollars. Thus, $\mathrm{P}(\mathrm{n}+1)$ is true.

Therefore, $\mathrm{P}(\mathrm{n})$ is true for all the values claimed above.

Section 4.3

4- \quad a) $f(n+1)=f(n)-f(n-1)$

$$
f(0)=f(1)=1
$$

$f(2)=f(1)-f(0)=1-1=0$
$f(3)=f(2)-f(1)=0-1=-1$
$f(4)=f(3)-f(2)=(-1)-0=-1$
$f(5)=f(4)-f(3)=(-1)-(-1)=0$
b) $f(n+1)=f(n) f(n-1)$

$$
f(0)=f(1)=1
$$

$f(2)=f(1) f(0)=(1)(1)=1$
$f(3)=f(2) f(1)=(1)(1)=1$
$f(4)=f(3) f(2)=(1)(1)=1$
$f(5)=f(4) f(3)=(1)(1)=1$
c) $f(n+1)=f(n)^{2}+f(n-1)^{3}$
$f(0)=f(1)=1$
$f(2)=f(1)^{2}+f(0)^{3}=(1)^{2}+(1)^{3}=1+1=2$
$f(3)=f(2)^{2}+f(1)^{3}=(2)^{2}+(1)^{3}=4+1=5$
$f(4)=f(3)^{2}+f(2)^{3}=(5)^{2}+(2)^{3}=25+8=33$
$f(5)=f(4)^{2}+f(3)^{3}=(33)^{2}+(5)^{3}=1089+125=1214$
d) $f(n+1)=f(n) / f(n-1)$

$$
f(0)=f(1)=1
$$

$f(2)=f(1) / f(0)=1 / 1=1$
$f(3)=f(2) / f(1)=1 / 1=1$
$f(4)=f(3) / f(2)=1 / 1=1$
$f(5)=f(4) / f(3)=1 / 1=1$
6- \quad a) $f(0)=1, \quad f(n)=-f(n-1)$ for $n \geq 1$
Valid: $\quad f(n)=(-1)^{n} \quad$ for $n \geq 1$
Proof: Basis Step: $\quad f(1)=(-1)^{1}=-1$
Inductive Hypothesis: $\quad f(n)=(-1)^{n} \quad$ for $n \geq 1$

$$
\text { Inductive Step: } \quad f(n+1)=-f(n)=-(-1)^{n}=(-1)(-1)^{n}=(-1)^{n+1}
$$

d) $f(0)=0, f(1)=1 \quad f(n)=2 f(n-1)$ for $n \geq 1$

Not Valid: defined starting at $n=1$, but $f(1)=2 f(0)=2 \cdot 0=0 \neq 1$.
e) $f(0)=2, \quad f(n)=f(n-1) \quad$ if n is odd and $n \geq 1$

$$
f(n)=2 f(n-2) \quad \text { if } n \geq 2
$$

Valid: $\quad f(n)= \begin{cases}2^{(n+2) / 2} & \text { if } n \text { is even and } n \geq 0 \\ 2^{(n+1) / 2} & \text { if } n \text { is odd and } n \geq 0\end{cases}$
Proof: Basis Step: $\quad f(0)=2^{(0+2) / 2}=2^{1}=2$

$$
f(1)=2^{(1+1) / 2}=2^{1}=2=f(0)
$$

Inductive Hypothesis: $\quad f(n)= \begin{cases}2^{(n+2) / 2} & \text { if } n \text { is even and } n \geq 0 \\ 2^{(n+1) / 2} & \text { if } n \text { is odd and } n \geq 0\end{cases}$ Inductive Step:

- n is even $\Rightarrow f(n)=2^{(n+2) / 2} \Rightarrow n+1$ is odd

$$
\begin{aligned}
& \Rightarrow \text { Show } f(n+1)=2^{(n+1+1) / 2}=2^{(n+2) / 2} \\
& f(n+1)=f((n+1)-1) \quad \text { (by recursive definition) } \\
& =f(n)=2^{(n+2) / 2} \quad \text { (by induction hypothesis) True } \\
& n \text { is odd } \Rightarrow f(n)=2^{(n+1) / 2} \Rightarrow n+1 \text { is even } \\
& \Rightarrow \text { Show } f(n+1)=2^{(n+1+2) / 2}=2^{(n+3) / 2} \\
& f(n+1)=2 f((n+1)-1) \quad \text { (by recursive definition) } \\
& =2 f(n)=2 \cdot 2^{(n+1) / 2} \quad \text { (by induction hypothesis) } \\
& =2^{(n+1) / 2+1}=2^{(n+1+2) / 2}=2^{(n+3) / 2} \quad \text { True }
\end{aligned}
$$

10- $\quad S_{m}(n)$ is the sum of the integer m and the nonnegative integer n.
$S_{m}(0)=m, S_{m}(1)=m+1, S_{m}(2)=m+2=(m+1)+1, \ldots$
Recursive Definition: $S_{m}(0)=m, S_{m}(n)=S_{m}(n-1)+1$ for $n \geq 1$.
12- f_{n} is the nth Fibonacci number.
Show $f_{1}{ }^{2}+f_{2}{ }^{2}+\ldots+f_{n}{ }^{2}=f_{n} f_{n+1}$ (using induction).
Let $P(n)$ be the statement " $f_{1}{ }^{2}+f_{2}{ }^{2}+\ldots+f_{n}{ }^{2}=f_{n} f_{n+1}$ ".
Basis Step: $P(1)$ is true because $f_{1}{ }^{2}=f_{1} f_{1}=f_{1} f_{2}$ since $f_{1}=f_{2}=1$.
Inductive Hypothesis: Assume $P(n)$ is true, i.e. $f_{1}{ }^{2}+f_{2}{ }^{2}+\ldots+f_{n}{ }^{2}=f_{n} f_{n+1}$
Inductive Step: Show that $P(n+1)$ is true, i.e. $f_{1}{ }^{2}+f_{2}{ }^{2}+\ldots+f_{n}{ }^{2}+f_{n+1}{ }^{2}=f_{n+1} f_{n+2}$

$$
\begin{aligned}
P(n+1) & =f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}+f_{n+1}^{2} & & \\
& =P(n)+f_{n+1}^{2} & & \\
& =f_{n} f_{n+1}+f_{n+1}^{2} & & \text { (by inductive hypothesis) } \\
& =f_{n+1}\left(f_{n}+f_{n+1}\right) & & \\
& =f_{n+1} f_{n+2} & & \text { (by Fibonacci formula) }
\end{aligned}
$$

Thus, $f_{1}{ }^{2}+f_{2}{ }^{2}+\ldots+f_{n}{ }^{2}=f_{n} f_{n+1}$ is true for all $n \geq 1$.
22 - Let A be the set of positive integers. We will show that $S=A$. We will show that A $\subseteq \mathrm{S}$ and $\mathrm{S} \subseteq \mathrm{A}$.

We will first show that A is a subset of S.
Let $\mathrm{P}(\mathrm{n})$ be the statement that n belongs to S , where n is an element in A .
Basis Step: $\mathrm{n}=1$, true since $1 \in \mathrm{~S}$
Hypothesis: Suppose $P(k)$ is true, i.e. $k \in S$
Inductive Step: Show that $\mathrm{P}(\mathrm{k}+1)$ is true.
$\mathrm{P}(\mathrm{k}+1)$ is true if $(\mathrm{k}+1) \in \mathrm{S}$, but $\mathrm{k}+1=(\mathrm{k})+(1)$, where $\mathrm{k} \in \mathrm{S}$ and $1 \in S$ and thus $(k+1) \in S$.
$\mathrm{P}(\mathrm{n})$ is true and $\mathrm{A} \subseteq \mathrm{A}$.

To show that $S \subseteq A$, we'll show that the base step of S is in A and elements generated by the recursive formula are in A as well, i.e. $(s+t) \in A$ whenever $s \in S$ and $t \in S$.
$1 \in A$, since 1 is a positive integer.
Let $s, t \in S$; s and t are positive integers and their sum $s+t=k$ is positive. Since k is a positive integer, then $k \in A$, (A is the set of all positive integers).

Therfeore, $\mathrm{A}=\mathrm{S}$.
24- a) the set of odd positive integers: set S $1 \in S$, and if $x \in S$ then $x+2 \in S$.
b) the set of positive integer powers of 3: set S
$1=3^{0} \in S$, and if $x \in S$ then $3 x \in S$
c) the set of polynomials with integer coefficients: set S
$c_{0} x^{0} \in S$, and if $c_{0} x^{0}+c_{1} x^{1}+\ldots+c_{n} x^{n} \in S$
then $c_{0} x^{0}+c_{1} x^{1}+\ldots+c_{n} x^{n}+c_{n+1} x^{n+1} \in S$
where $c_{i} \in \mathrm{~N}, i \geq 0$
26- $\quad S$ is the subset of the set of ordered pairs of integers defined recursively by
Basis Step: $(0,0) \in S$.
Recursive Step: If $(a, b) \in S$, then $(a+2, b+3) \in S$ and $(a+3, b+2) \in S$.
a) $(2,3),(3,2) ;(4,6),(5,5),(6,4) ;(6,9),(7,8),(8,7),(9,6) ;$ $(8,12),(9,11),(10,10),(11,9),(12,8) ;(10,15),(11,14),(12,13),(13,12)$, $(14,11),(15,10)$.
b) Let $P(n)$ be the statement that 5 divides $a+b$ whenever $(a, b) \in S$ is obtained by n applications of the recursive step.
Basis Step: $P(0)$ is true because 5 divides $0+0$ and $(0,0) \in S$ obtained with 0 steps of the recursion.
Inductive Step: Assume $P(k)$ is true, i.e. 5 divides $a+b$ whenever $(a, b) \in S$ is obtained by k or less applications of the recursive step.
Show $P(k+1)$ is true, i.e. it's valid for an element obtained with $k+1$ applications of the recursion.
So 5 divides $a+b$ (which is obtained by fewer iterations), and applying the final recursive step results in $(a+2, b+3)$ and $(a+3, b+2)$.
Case 1: $a+2+b+3=a+b+5=(a+b)+5 \quad$ divisible by 5 .
Case 1: $a+3+b+2=a+b+5=(a+b)+5 \quad$ divisible by 5.
32- a) ones(s) : counts the number of ones in a bit string s.
Let x be a single bit, i.e. $x \in\{0,1\}$. Let s be a bit string, i.e. $s \in\{0,1\}^{*}$.
$\operatorname{ones}(x)= \begin{cases}1 & \text { if } x=1 \\ 0 & \text { if } x=1\end{cases}$

Then, $s=t x \quad$ where t is also a bit string, and $|t|=|s|-1$.
So, ones $(s)=$ ones $(t x)=$ ones $(t)+$ ones (x).
50- $\quad A(1, n)=2^{n} \quad$ for $n \geq 1$.
Let $P(n)$ be the statement " $A(1, n)=2^{n}$ " for $n \geq 1$.
Basis Step: $P(1)$ is true because $A(1,1)=2$ according to Ackermann's function and $\quad A(1,1)=2^{1}=2$ according to $P(1)$

Inductive Step: Assume $P(k)$ is true for $k \geq 1$, i.e. $A(1, k)=2^{k}$ Show that $P(k+1)$ is true, i.e. $A(1, k+1)=2^{k+1}$
$A(1, k+1)=A(0, A(1, k)) \quad$ according to Ackermann's function - rule 4 $=A\left(0,2^{k}\right) \quad$ according to induction hypothesis
$=2\left(2^{k}\right) \quad$ according to Ackermann's function - rule 1 $=2^{k+1}$
Thus, using the basis step and the inductive step, and by the principle of mathematical induction, $A(1, n)=2^{n}$ for $n \geq 1$.

Section 3.1

4- procedure maxDiff $\left(a_{1}, a_{2}, \ldots, a_{n}\right.$: integers)
diff := 0
maxDiff := 0
for $i:=1$ to $n-1$
diff $:=a_{i}-a_{i+1}$
if $a b s$ Value (diff) > maxDiff
then maxDiff := absValue (diff)
\{maxDiff has the desired value\}
6- procedure numNegative ($a_{1}, a_{2}, \ldots, a_{n}$: integers)
count := 0
for $i:=1$ to n
if $a_{i}<0$ then count := count +1
\{count has the desired value\}

10- procedure powerNonNeg (x : real; n : positive integer)
power := 1
for $i:=1$ to n
power := power $\times x$
\{power has the desired value, and this is a subprocedure being called by another\}
procedure power (x:real; n: integer)
power := powerNonNeg (x, absValue(n))
if $n<0$ then power := 1 / power
\{power has the desired value, for all negative and nonnegative powers\}
18- procedure lastSmallest ($a_{1}, a_{2}, \ldots, a_{n}$: integers)
smallest := a_{1}
smallestLoc := 1
for i := 2 to n
if $a_{i} \leq$ smallest then
begin
smallest := a_{i}
smallestLoc := i
end
\{smallestLoc has the desired value\}

32- procedure greaterTerms ($s_{1}, s_{2}, \ldots, s_{n}$: integers)
sum := s_{1}
termList := \{\}
for $i:=2$ to n
if $a_{i}>$ sum then termList $:=$ termList $\cup s_{i}$
sum := sum $+s_{i}$
\{termList has the desired set\}
34 - The lists obtained at each step are:

$$
\begin{aligned}
& i=1 ; j=1 ;(2 ; 6 ; 3 ; 1 ; 5 ; 4) \\
& i=1 ; j=2 ;(2 ; 3 ; 6 ; 1 ; 5 ; 4) \\
& i=1 ; j=3 ;(2 ; 3 ; 1 ; 6 ; 5 ; 4) \\
& i=1 ; j=4 ;(2 ; 3 ; 1 ; 5 ; 6 ; 4) \\
& i=1 ; j=5 ;(2 ; 3 ; 1 ; 5 ; 4 ; 6) \\
& i=2 ; j=1 ;(2 ; 3 ; 1 ; 5 ; 4 ; 6) \\
& i=2 ; j=2 ;(2 ; 1 ; 3 ; 5 ; 4 ; 6) \\
& i=2 ; j=3 ;(2 ; 1 ; 3 ; 5 ; 4 ; 6) \\
& i=2 ; j=4 ;(2 ; 1 ; 3 ; 4 ; 5 ; 6) \\
& i=3 ; j=1 ;(1 ; 2 ; 3 ; 4 ; 5 ; 6) \\
& i=3 ; j=2 ;(1 ; 2 ; 3 ; 4 ; 5 ; 6) \\
& i=3 ; j=3 ;(1 ; 2 ; 3 ; 4 ; 5 ; 6) \\
& i=4 ; j=1 ;(1 ; 2 ; 3 ; 4 ; 5 ; 6) \\
& i=4 ; j=2 ;(1 ; 2 ; 3 ; 4 ; 5 ; 6) \\
& i=5 ; j=1 ;(1 ; 2 ; 3 ; 4 ; 5 ; 6)
\end{aligned}
$$

