Problem 1 (10 Points)

The following algorithm is linear search, where $a_{1}, a_{2}, \ldots, a_{n}$: are not necessarily distinct In particular, location is the subscript of the first occurrence of a term that equals x or is 0 if x is not found:
procedure linear search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: integers)
$1 \quad i:=1\{i$ is left endpoint of search interval $\}$
$2 \quad$ while ($i \leq n$ and $x \neq a_{i}$)
$3 \quad i:=i+1$
$4 \quad$ if $i>n$ then location := 0
5 else
6 begin
$7 \quad$ location $:=-i$
$8 \quad i:=i+1$
$9 \quad$ while $\left(i \leq n\right.$ and $\left.x \neq a_{i}\right)$
$10 \quad i:=i+1$
$11 \quad$ if $i \leq n$ then location := i
12 end
a. (3) Complete the pseudo code in line 3 above
b. (7) Adjust in the space above, the algorithm to compute location to be the subscript of the second occurrence of a term that equals x, or is the negative of the subscript of the first and only occurrence of x if x is found only once, or 0 if x is not found.
(e.g. if the list is $3,2,1,2,8,6,2,10$ then for $x=5$, location $=0$; for $x=1$, location $=-3$; for $x=2$, location $=4$)
Explain your adjustment in English in the space below
Line 4 will return 0 in location if x is not found.
Else, x is found and its first occurrence is at index i. The negative of i is assigned to location in line 7.
In lines $8-9-10$, the search continues from just after this first occurrence of x (line 8 , where i is incremented). If x is found again (line 11), location will be updated to the subscript at which x is found the second time. Else, location is not updated, and remains to hold the negative of the subscript of where x was found first.

Problem 2 (10 Points)

The following algorithm is binary search, where $a_{1}, a_{2}, \ldots, a_{n}$ are in non-decreasing order, and not necessarily distinct; In particular, location is the subscript of the term that equals x or is 0 if x is not found
procedure binary search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: non-decreasing integers)
$1 \quad i:=1$ \{i is left endpoint of search interval $\}$
$2 \quad j:=n\{j$ is right endpoint of search interval $\}$
$3 \quad$ while $i<j$
4 begin
$5 \quad m:=\lfloor(i+j) / 2\rfloor$
$6 \quad$ if $x>a_{m}$ then $i:=m+1$
$7 \quad$ else $j:=m$
8 end
9 if $x=a_{i}$ then location : $=i$
10 else location :- 0
$9 \quad$ if $x \neq a_{i}$ then location :=0 $\quad\{x$ is not found $\}$
10 else begin
location :=-i $\quad\{$ first occurrence of $x\}$
if $i<n$ then $\quad\{$ there won't be another occurrence of x if $i=n\}$
if $x=a_{i+1}$ then location :=i+1
end
a. (3) Complete the pseudo code in line 5 above
b. (7) Adjust in the space above, the algorithm to compute location to be the subscript of the second occurrence of a term that equals x, or is the negative of the subscript of the first and only occurrence of x if x is found only once, or 0 if x is not found.
(e.g. if the list is $1,2,2,2,6,8,10$ then for $x=5$, location $=0$; for $x=1$, location $=-1$; for $x=2$, location $=3$)
Explain in English in the space below your adjustment of the algorithm
Two main observations:

1. If x is present in more than one location in the given list, these locations have to be adjacent successive positions, since the list is non-decreasing. So if the first occurrence is at position i, then the second occurrence if any must be at $i+1$.
2. At the end of the while loop, if x is found at subscript i then this will be the subscript of the first occurrence of x in the list. This is because in line 7, even if $x=a_{m}$ the search does not stop, but it continues to "zoom in" until $i=j$.
So the adjustment is as follows: If x is not found, the location is assigned 0 (Line 9).
Otherwise, if x is found, then the first occurrence is at i. So set location to -i (Line 11).
Note that if $i=n$ then there will not be a second occurrence. Otherwise, if $i<n$, then
if there is another occurrence it has to be at $i+1$, since the list is non-decreasing. So all that is needed is to check if $x=a_{i+1}$., and if so, set location to $i+1$. (Lines 12-13)

Problem 3 (10 Points)

This problem also refers to the Binary Search algorithm given above.
Write the binary search algorithm as a recursive algorithm.
The idea is:
Basis step: If the array contains one element, then check if that element is x. If it is, the return the location of that element; if not then return 0 in location.
Recursive step:
If $x>$ the middle element then Binary Search in the "upper" half of the list Else Binary Search in the "lower or equal" part of the list.
procedure binary search recursive (x integer; , $a_{1}, a_{2}, \ldots, a_{n}$: non-decreasing integers; i, j : subscripts representing the boundaries of where to search next)
if $i=j$ then \quad \{base case\}
if $x=a_{i}$ then location := i else location $=0$
else begin
$m:=\lfloor(i+j) / 2\rfloor$
if $x>a_{m}$ then binary search recursive $\left(x ; a_{1}, a_{2}, \ldots, a_{n} ; m+1, j\right)$
else binary search recursive ($x ; a_{1}, a_{2}, \ldots, a_{n} ; i, m$)
end

Problem 4 (15 Points)

a. (5) Use the definition of big-oh to show that $2 n^{2}-100 n$ is $O\left(n^{2}\right)$. Make sure to give the witnesses.
For any $n>1,\left|2 n^{2}-100 n\right| \leq 2 n^{2}+100 n \leq 2 n^{2}+100 n^{2} \leq 102 n^{2}$. So $2 n^{2}-100 n$ is $O\left(n^{2}\right)$ with witnesses $k=1$ and $\mathrm{C}=102$.
b. (5) Use the definition of big-omega to show that $2 n^{2}-100 n$ is $\Omega\left(n^{2}\right)$. Make sure to give the witnesses

Note that $2 n^{2}-100 n \geq 0$ for $n \geq 50$. So $\left|2 n^{2}-100 n\right|=2 n^{2}-100 n=n^{2}+\left(n^{2}-100 n\right)$

$$
\geq n^{2} \quad \text { for } n \geq 100
$$

Thus $2 n^{2}-100 n$ is $\Omega\left(n^{2}\right)$, where $\mathrm{C}=1$, and $k=100$ are witnesses.
c. (5) Conclude that $2 n^{2}-100 n$ is $\Theta\left(n^{2}\right)$.

By the definition of big-theta, since $2 n^{2}-100 n$ is $O\left(n^{2}\right)$ and $2 n^{2}-100 n$ is $\Omega\left(n^{2}\right)$, then $2 n^{2}-100 n$ is $\Theta\left(n^{2}\right)$.

Problem 5 (15 Points)

Consider the proposition
$P(n)$: An amount of postage of n cents can be formed using 3-cent and 5-cent stamps. You should prove that $P(n)$ is true for $n \geq 8$, first using mathematical induction and then using strong mathematical induction.
a. (8) Use mathematical induction to prove that $P(n)$ is true for $n \geq 8$.

Basis step: $\quad P(8)$ is true, since $8=3.1+5.1$
Inductive Step: Assume $P(k)$ is true. Show that $P(k+1)$ is true.
So $k=3 . a+5 . b$. Must show that $k+1=3 . a^{\prime}+5 . b^{\prime}$
Case 1: $b=0$
$k=3 . a$. Since $k \geq 8$, then $a \geq 3$. So $k+1=3 . a+1=3 .(a-3)+9+1=3 .(a-3)+10=3 .(a-3)+5.2$. SO $P(k+1)$ is true.

Case 2: $b>0$
$k=3 \cdot a+5 . b$. So $k+1=3 \cdot a+5 \cdot b+1=3 \cdot a+5 .(b-1)+5+1=3 .(a+2)+5 .(b-1)$. So $P(k+1)$ is true.

Thus by mathematical induction $P(n)$ is true for $n \geq 8$.
b. (7) Use strong mathematical induction to prove the result. (Hint: Show that the statements $P(8), P(9)$, and $P(10)$ are true, and use strong induction accordingly)

BASIS STEP: $P(8), P(9)$, and $P(10)$ are true, since $8=3.1+5.1$, so $P(8)$ is true; $9=3.3$ so $P(9)$ is true; $10=5.2$ so $\mathrm{P}(10)$ is true.

INDUCTIVE STEP: Now assume that $P(8), P(9), \ldots P(k), k \geq 10$ are all true. Show that $P(k+1)$ is true. If $k \geq 10$, then $k-2 \geq 8$. So $P(k-2)$ is true. i.e. $k-2=3 . a+5 . b$. Now, $k+1=(k-2)+3$. But $k-2=3 . a+5 . b$. So $k+1=3 . a+5 . b+3=3 .(a+1)+5 . b$. Therefore, $P(k+1)$ is true.

Thus by strong mathematical induction $P(n)$ is true for $n \geq 8$.

Problem 6 (10 Points)

In the questions below give a recursive definition with initial condition(s).
a. (4) The function $f(n)=3^{n}, n=1,2,3, \ldots$.

Basis step: $\quad f(1)=3$
Recursive step: $f(n)=3 . f(n-1), n \geq 2$.
b. (3) The sequence $a_{1}=24, a_{2}=20, a_{3}=16, a_{4}=12, \ldots$.

Basis step: $\quad a_{1}=24$
Recursive step: $a_{n}=a_{n-1}-4, \quad n \geq 2$.
c. (3) The set $\{0,1,3,7,15,31 \ldots\}$.

Basis step: $0 \in S$
Recursive step: $\quad x \in S \rightarrow 2 x+1 \in S$

Problem 7 (10 Points)

Each of the following statements is FALSE. In each case, give a counter example.
a. (4) For all $\mathrm{a}>1, a^{n}$ is $\mathrm{O}\left(2^{n}\right)$

Counter example: $a=4$. Then $a^{n}=4^{n}=2^{n} .2^{n}$ which cannot be bounded by C2n ; i.e. we cannot have $2^{n} .2^{n} \leq C 2^{n}$, since no matter how large C is, 2^{n} will be larger than C for sufficiently large n... specifically for $n>\log _{2}$ C.
b. (3) If $f(n)$ is $\mathrm{O}(g(n))$ then $g(n)$ is $\mathrm{O}(f(n))$

Let $f(n)=n$ and $g(n)=n^{2}$. Then clearly $f(n)$ is $\mathrm{O}(g(n))$ but $g(n)$ is not $\mathrm{O}(f(n))$
c. (3) If $f(n)$ is $\mathrm{O}\left(n^{2}\right)$ and $g(n)$ is $\mathrm{O}\left(n^{2}\right)$, then $f(n)-g(n)=0$

Let $f(n)=n^{2}$ and $g(n)=n^{2}-2$. Then clearly $f(n)$ is $\mathrm{O}\left(n^{2}\right)$ and $g(n)$ is $\mathrm{O}\left(n^{2}\right)$, but $f(n)-g(n)=2$ which is not 0 .

Problem 8 (25 Points)

Let $n>0$ be any integer. Then there is an k such that $2^{k} \leq n<2^{k+1}$. i.e. n is sandwiched between two successive powers of 2 .
a. (5) Complete the following table

n	4	7	18	32	60	90	150
k	2	2	4	5	5	6	7

b. (5) Show that $k=\lfloor\log n\rfloor$, where \log is the logarithmic function base 2 .

Let $2^{k} \leq n<2^{k+1}$. Since the \log is an increasing function, it follows that $\log 2^{k} \leq \log n<\log 2^{k+1}$. So $k \leq \log n<k+1$. Thus $k=\lfloor\log n\rfloor$.
c. (8) Give an algorithm that computes k as above for a given n. Of the arithmetic operations your algorithm can only use addition. It cannot use multiplication nor division.
procedure compute (n : positive integer)

$$
\begin{aligned}
& p:=1 \\
& k:=0 \\
& \text { while } p \leq n \\
& \quad \text { begin } \\
& \quad p:=p+p \\
& \quad k:=k+1 \\
& \quad \text { end } \\
& k:=k-1
\end{aligned}
$$

$\{k$ is the required power of 2$\}$
d. (4) What is the operation count of your algorithm of part (c) above? Give the number of additions performed.

$$
T(n)=2(\lfloor\log n\rfloor+1)+1
$$

e. (3) Based on your answer in part (d), what is the big-O estimate that you can give ?

$$
T(n)=O(\log n)
$$

