4\%

1. Specify the type of response $V_{o}(j \omega) / I_{S R C}(j \omega)$.

$$
\overbrace{}^{I_{S R C}(j \omega)}
$$

A. First-order lowpass
B. First-order highpass
C. Second-order lowpass
D. Second-order highpass
E. Second-order bandpass

Solution: The current source isolates the right-half of the circuit from the left half. $V_{0}(j \omega) \rightarrow 0$ as $\omega \rightarrow \infty$, and $V_{0}(j \omega) \rightarrow R_{1} I_{\text {SRC }}(j \omega)$ as $\omega \rightarrow 0$ independently of the left half. The response is first-order lowpass. The transfer function is $\frac{\left.V_{d} j \omega\right)}{\left.I_{S R \delta} j \omega\right)}=\frac{R_{1}}{1+j \omega C R_{1}}$

Together At Work
4\%
2. Specify which combination of variables gives a bandstop response with respect to $I_{S R C}(j \omega)$.

A. $I_{L}(j \omega)+I_{C}(j \omega)$
B. $I_{L}(j \omega)+I_{G}(j \omega)$
C. $I_{G}(j \omega)+I_{C}(j \omega)$
D. $I_{G}(j \omega)$
E. $V_{o}(j \omega)$

Solution: The correct combination is $I_{L}(j \omega)+I_{C}(j \omega)$, the dual of $V_{C}(j \omega)+V_{L}(j \omega)$ in the series circuit, The transferfunction is $\frac{1 / j \omega L}{G+1 / j \omega L+j \omega C}+\frac{j \omega C}{G+1 / j \omega L+j \omega C}=$
$\frac{\text { "Pilovi } \omega_{n}^{2} L \text { GGUB Students } 1 / 1 i t / \omega_{a}^{2} b \omega_{0}^{2} \operatorname{ter} \text { Campus Lii } \omega_{0}^{2}-\omega^{2}}{1-\omega^{2} L C+j \omega L G}=\frac{s^{2}+\omega_{0}^{2}}{1-\omega^{2} / \omega_{0}^{2}+j \omega L G}=\frac{\omega_{0}^{2}}{\omega_{0}^{2}-\omega^{2}+j \omega \omega_{0} / Q}=\frac{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}}{}$

4\%
3. Specify which of the following statements is or are true. (If more than one statement is true, no credit is given for a partially correct answer).
A. In a series RLC circuit, the magnitude of the peak of the lowpass response can exceed the magnitude of the applied excitation.
B. In a series RLC circuit, the magnitude of the peak of the bandpass response can exceed the magnitude of the applied excitation.
C. In a second-order, lowpass filter, the corner frequency is not equal to the half-power frequency except in the case of a Butterworth response.
D. In applying frequency and magnitude scaling, Q stays the same.
E. In a parallel $R L C$ tuned circuit, increasing R, with L and C constant, increases the

bandwidth.

Solution: A is true; B is false; C is true, D is true, and E is false.

4\%
4. Determine the frequency at which $V_{o}(j \omega)=0$, assuming $C=1 \mu \mathrm{~F}$.
A. $707.1 \mathrm{krad} / \mathrm{s}$
B. $577.4 \mathrm{krad} / \mathrm{s}$
C. $500 \mathrm{krad} / \mathrm{s}$
D. $447.2 \mathrm{krad} / \mathrm{s}$
E. $408.2 \mathrm{krad} / \mathrm{s}$

Solution: At the required frequency ω_{Z}, the impedance of the parallel $L C$ circuit is inductive and produces series resonance with C, resulting in $V_{o}(j \omega)=0$. The impedance of the parallel $L C$ circuit is: $\frac{\left(j \omega_{z}^{\prime} \times 10^{-6}\right)\left(1 /\left(j \omega_{Z}^{\prime} \times 10^{-6}\right)\right)}{j \omega_{z}^{\prime} \times 10^{-6}+1 /\left(j \omega_{z}^{\prime} \times 10^{-6}\right)}=\frac{j \omega_{z}^{\prime} \times 10^{-6}}{1-\left(\omega_{Z}^{\prime}\right)^{2} \times 10^{-12}}=\frac{j \omega_{z}}{1-\omega_{Z}^{2}}$, where ω_{z}^{\prime} is in rad $/ \mathrm{s}$ and ω_{Z} is in $\mathrm{Mrad} / \mathrm{s}$. It follows that for series resonance, $\frac{j \omega_{Z}}{1-\omega_{Z}^{2}}+\frac{1}{j \omega_{z} C}=0$, or $\omega_{Z}^{2} C=1-\omega_{Z}^{2}$, which gives $\omega_{z}=1 / \sqrt{1+C} \mathrm{Mrad} / \mathrm{s}$.

Version 1: $C=1, \omega_{z}=1 / \sqrt{1+C}=1 / \sqrt{2} \equiv 707.1 \mathrm{krad} / \mathrm{s}$
Version $2: C=2, \omega_{z}=1 / \sqrt{1+C}=1 / \sqrt{3} \equiv 577.4 \mathrm{krad} / \mathrm{s}$
Version 3: $C=3, \omega_{Z}=1+\sqrt{1+C}=1 / \sqrt{4 \equiv 500} \mathrm{krad} / \mathrm{s}$
Version 4: $C=4, \omega_{z}=1 / \sqrt{1+C}=1 / \sqrt{5} \equiv 447.2 \mathrm{krad} / \mathrm{s}$ "Providing $A \cup B$ Students with a Better Campus Life"
Version 5: $C=5, \omega_{z}=1 / \sqrt{1+C}=1 / \sqrt{6} \equiv 408.2 \mathrm{krad} / \mathrm{s}$.

4\%
5. Determine the $3-\mathrm{dB}$ cutoff frequency for the response $I_{0}(j \omega) / I_{\text {SRC }}(j \omega)$, assuming $R=1 \mathrm{k} \Omega$.

D. $375 \mathrm{rad} / \mathrm{s}$
E. $300 \mathrm{rad} / \mathrm{s}$

Solution: ω_{C} is determined as the effective capacitance $C_{\text {eff }}$ seen across R when the current source is set to zero, that is, replaced by an open circuit. Under these conditions, the upper capacitors are in series and will have a capacitance of $\frac{0.5 \times 1}{1.5}=\frac{1}{3} \mu \mathrm{~F}$. Similarly the lower
capacitors will have a capacitance of $1 / 3 \mu \mathrm{~F}$. $C_{\text {eff }}$ will then bethat of two $f(3 \mu \mathrm{~F}$ capacitors in parallel, or $2 / 3 \mu \mathrm{~F}$. $\omega_{c}=\frac{1}{C_{\text {eff }} R}=\frac{1}{(2 / 3) \times 10^{-6} \times R \times 10^{3}}=\frac{1500}{R}$, where R is in $\mathrm{k} \Omega$.

Version 1: $R=1 \mathrm{k} \Omega, \omega_{c}=1500 / 1=1500 \mathrm{rad} / \mathrm{s}$
Version 2: $R=2 \mathrm{k} \Omega, \omega_{c}=1500 / 2=750 \mathrm{rad} / \mathrm{s}$
Version 3: $R=3 \mathrm{k} \Omega, \omega_{c}=1500 / 3=500 \mathrm{rad} / \mathrm{s}$
Version 4: $R=4 \mathrm{k} \Omega, \omega_{c}=1500 / 4=375 \mathrm{rad} / \mathrm{s}$
Version 5: $R=5 \mathrm{k} \Omega, \omega_{c}=1500 / 5=300 \mathrm{rad} / \mathrm{s}$.

4\%
6. Determine Thevenin's voltage looking into terminals ab, assuming $V_{S R C}(j \omega)=1 \mathrm{~V}$.
A. 1.6 V S Cial CuUl
B. 0.4 V
C. "Providing AUB Students with a Better Campus Life"
D. 0.2 V
E. 0.6 V

Solution: The impedance of the $1 \mu \mathrm{~F}$ capacitor is

$1 /(j \omega \times 1) \Omega$, where ω is in Mrad/s and the impedance of the $0.25 \mu \mathrm{~F}$ capacitor is $1 /(j \omega \times 0.25) \Omega$ $=4 / j \omega$. It follows from voltage division that $V_{T h}=\frac{4 / j \omega}{4 / j \omega+1 / j \omega} V_{S R C}(j \omega)=0.8 V_{S R C}(j \omega)$.

Version 1: $V_{S R C}(j \omega)=1 \mathrm{~V} ; V_{T h}=0.8 \times 1=0.8 \mathrm{~V}$
Version 2: $V_{S R C}(j \omega)=2 \mathrm{~V}$; $V_{T h}=0.8 \times 2=1.6 \mathrm{~V}$

Version 3: $V_{S R C}(j \omega)=3 \mathrm{~V} ; V_{T h}=0.8 \times 3=2.4 \mathrm{~V}$
Version 4: $V_{S R C}(j \omega)=4 \mathrm{~V} ; V_{T h}=0.8 \times 4=3.2 \mathrm{~V}$
Version 5: $V_{S R C}(j \omega)=5 \mathrm{~V} ; V_{T h}=0.8 \times 5=4 \mathrm{~V}$.

4\%
7. Determine $i(t), t>0$, assuming zero initial energy storage, unit impulses are in $\mu \mathrm{Vs}$, and $L=1 \mu \mathrm{H}$.
A. 3 A
B. 1.5 A
C. 1 A
D. 0.75 A
E. 0.6 A

Solution: From KVL, $v_{b a}=3 \delta(t)-\delta(t)$, and $i_{b a}=$
$\left.\left.\frac{1}{L} \int_{0^{-}}^{0^{+}}[3 \phi t)-\phi t\right)\right] d t=\frac{3}{L}-\frac{1}{L}=\frac{2}{L} \mathrm{~A}, t>0$. Similarly,
$v_{c a}=2 \delta(t)-\delta(t)$, and $\left.\left.i_{c a}=\frac{1}{L} \int_{0^{-}}^{0^{+}}[2 \phi t)-\phi t\right)\right] d t=\frac{2}{L}-\frac{1}{L}$
$=\frac{1}{L} \mathrm{~A}, t>0$. From KCL, $i(t)=i_{b a}+i_{c a}=3 / L \mathrm{~A}, t>0$.
Version 1: $L=1 \mu \mathrm{H}, i(t)=3 / 1=3 \mathrm{~A}$
Version 2: $L=2 \mu \mathrm{H}, i(t)=3 / 2=1.5 \mathrm{~A}$

Version 3: $L=3 \mu H, i(t)=3 / 3=1 \mathrm{~A}$
Version 4: $L=4 \mu \mathrm{H}, i(t)=3 / 4=0.75 \mathrm{~A}$
Version $5: L=5 \mu \mathrm{H}, i(t)=3 / 5=0.6 \mathrm{~A}$
4\%

8. Evaluate $A \int_{A_{\text {Plo }}}^{\infty}(\cos t) \delta\left(2 t-\frac{\pi}{3}\right) d t$, where $A=1$
A. 0.35
B. 0.71
C. 1.06
D. 1.41
E. 1.77

Solution: The coefficient of t in the impulse function should be unity. Hence a new variable t^{\prime} is defined, where $t^{\prime}=2 t$. The integral becomes: $\frac{A}{2} \int_{-\infty}^{\infty} \cos \frac{t^{\prime}}{2} \delta\left(t^{\prime}-\frac{\pi}{2}\right) d t^{\prime}$. The integrand is
zero everywhere except from $t^{\prime}=(\pi / 2)^{-}$to $t^{\prime}=(\pi / 2)^{+}$, when the impulse occurs. At this value of $t^{\prime}, \cos \left(\frac{t^{\prime}}{2}\right)$ is continuous and equals $\cos (\pi / 4)=1 / \sqrt{2}$. The integral becomes:
$\frac{A}{2 \sqrt{2}} \int_{-\pi / 2)}^{t \pi / 2)+} \delta\left(t^{\prime}-\frac{\pi}{2}\right) d t^{\prime}=\frac{A}{2 \sqrt{2}}$.

Version 1: $A=1, \frac{1}{2 \sqrt{2}}=0.35$
Version 2: $A=2, \frac{1}{\sqrt{2}}=0.71$
Version 3: $A=3, \frac{3}{2 \sqrt{2}}=1.06$
Version 4: $A=4, \frac{2}{\sqrt{2}}=1.41$
Version 5: $A=5, \frac{5}{2 \sqrt{2}}=1.77$.

Together At Work

4\%
9. A $2 \mu \mathrm{~F}$ capacitor is connected at $t=0$ in parallel with a $3 \mu \mathrm{~F}$, the initial voltages being 6 V and 8 V , respectively, with the polarities being as shown. Determine the amount of charge transferred between
 the two capacitors.
A. $16.8 \mu \mathrm{C}$
B. $8.4 \mu \mathrm{C}$
C. $25.2 \mu \mathrm{C}$

AUB
D. $\frac{21+0,6 u \mathrm{C}}{2} \mathrm{Social}$ Clulb

Solution: The initial sharges ware $+12 \mu \mathrm{~B}$ on C_{1} and $-24 \mu \mathrm{C}$ on $C_{2}, C_{\text {eqp }}=2+3=5 \mu \mathrm{~F}$ and will have a charge of $+12-24=-12 \mu \mathrm{C}$. The voltage on $C_{\text {eqp }}$, and hence on C_{1} and C_{2}, is $-12 / 5=-2.4 \mathrm{~V}$. The final charges are $-4.8 \mu \mathrm{C}$ on C_{1} and $-7.2 \mu \mathrm{C}$ on C_{2}. The charge transferred the $2 \mu \mathrm{~F}$ capacitor to the $3 \mu \mathrm{~F}$ capacitor is $12-(-4.8)=16.8 \mu \mathrm{C}$.

4\%
10. A voltage pulse of 1 V amplitude and $2 \mu \mathrm{~s}$ duration is applied to two uncharged inductors of $2 \mu \mathrm{H}$ and $3 \mu \mathrm{H}$ connected in series. Determine the final flux linkage in the $2 \mu \mathrm{H}$ inductor in $\mu \mathrm{Wb}$-turns.
A. 0.8
B. 1.6
C. 2.4
D. 3.2
E. 4

Solution: $L_{\text {eqs }}=5 \mu \mathrm{H}$ and the flux linkage due to the voltage pulse is $2 B \mu \mathrm{C}$, where B is the amplitude of the pulse. The current in $L_{\text {eqs }}$, and hence in L_{1} and L_{2}, is $2 B / 5 \mathrm{~A}$. The final flux linkage in the $2 \mu \mathrm{H}$ inductor is $\lambda=4 B / 5 \mu \mathrm{~Wb}$-turns.
Version 1: $B=1, \lambda=4 / 5=0.8 \mu \mathrm{~Wb}$-turns
Version 2: $B=2, \lambda=8 / 5=1.6 \mu \mathrm{~Wb}$-turns
Version 3: $B=3, \lambda=12 / 5=2.4 \mu \mathrm{~Wb}$-turns
Version 4: $B=4, \lambda=16 / 5=3.2 \mu \mathrm{~Wb}$-turns
Version 5: $B=5, \lambda=20 / 5=4 \mu \mathrm{~Wb}$-turns.

20\%

11. It is required to design a bandpass filter having a resonant frequency of $10^{6} \mathrm{rad} / \mathrm{s}$, a bandwidth of $10^{4} \mathrm{rad} / \mathrm{s}$, and a maximum magnitude of response of 0.5 .
$7 \% \quad$ a. Specify the required transfer function in terms of $s=j \omega$.
7\%
b. Determine R and C, assuming a series circuit and $L=1 \mathrm{mH}$.
6% c. Draw the required circuit using 5Ω resistors, 2 mH inductors, and 2 nF capacitors, and specify how the output voltage is taken.
Solution: (a) The required bandpass transfer function in standard form is:
$H(s)=\frac{\left(\omega_{0} / Q\right) s}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}}$, where $\left(\omega_{0} / Q\right)$ is the bandwidth, and the maximum magnitude of response is 1 . It follows that the required transfer function is:

 Ω.
(c) The circuit will have two 2 mH inductors in parallel, two 2 nF capacitors in series, and two 5Ω resistors in series, the output voltage being taken across one of
 the resistors.
12. It is required to design a highpass, second order Butterworth filter having $\omega_{0}=10 \mathrm{krad} / \mathrm{s}$, using a $0.1 \mu \mathrm{~F}$ capacitor, given that the normalized second-order Butterworth function is $s^{2}+\sqrt{2} s+1$.
5% a. Specify the required transfer function in terms of the second-order normalized
Butterworth function.
10% b. Derive the required actual values of R and L using scaling and assuming a
series RLC circuit.
5% c. If the filter circuit is that
shown, specify the values
of resistance, capacitance and inductance that will implement the required transfer function.

Solution: (a) The required highpass transfer function is that having s^{2} in the numerator and the normalized second-order Butterworth function in the denominator, that is: $H(s)=\frac{s^{2}}{s^{2}+\sqrt{2} s+1}$, where $\omega_{0}=1 \mathrm{rad} / \mathrm{s}, L=1 \mathrm{H}, C=1 \mathrm{~F}, \sqrt{2}=\frac{\omega_{0}}{Q}=\frac{\omega_{0} R}{\omega_{0} L}=R$.
(b) $k_{f}=10(\mathrm{krad} / \mathrm{s}) / 1(\mathrm{rad} / \mathrm{s})=10^{4} ; 0.1 \mu \mathrm{~F}=\frac{1}{k_{f} k_{m}}(1 \mathrm{~F})$, or $k_{m}=\frac{1}{10^{4} \times 10^{-7}}=10^{3}$. This gives $L=\frac{k_{m}}{k_{f}}(1 \mathrm{H})=0.1 \mathrm{H}$ and $R=k_{m} \sqrt{2}=1000 \sqrt{2}=1414 \Omega$. As a check, $\omega_{0}=\frac{1}{-\sqrt{0.1 \times 10^{-7}}}=10^{4} \mathrm{rad} / \mathrm{s}, Q=\frac{\omega_{0} L}{R}=\frac{10^{4} \times 0.1}{1000 \sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{1}{\omega_{0} C R}=$

(c) From the circuit shown, $V_{O}(j \omega)=j \omega 10 L_{1} /$, or $\frac{V_{o}(j \omega)}{l}=j \omega 10 L_{1}$. The effective inductance is therefore $10 L_{1}$. Equating this to 0.1 H , gives $L_{1}=10 \mathrm{mH}$. $C=0.1 \mu \mathrm{~F}$ as given, and $R=1414 \Omega$ as calculated in
 (b).

20\%

13. It is required to derive the dual of the circuit shown.

5\%
a. Derive the mesh-current equations using the mesh currents shown.
$10 \% \mathrm{~b}$. Deduce the node-voltage equations of the dual circuit.
5% c. Derive the circuit that will give these node-voltage equations with respect to a specified reference node.
Solution: (a) The mesh-current equations are:

$$
\begin{aligned}
& j \omega 2 \times 10^{-3} i_{1}=1 \mathrm{~V}-3 \mathrm{~V} \\
& j \omega 1 \times 10^{-3} i_{2}=3 \mathrm{~V}-2 \mathrm{~V}
\end{aligned}
$$

$$
j \omega 3 \times 10^{-3} i_{3}=2 \mathrm{~V}-1 \mathrm{~V}
$$

(b) The node-voltage equations of the dual circuit are:

$$
\begin{aligned}
& j \omega 2 \times 10^{-3} v_{1}=1 \mathrm{~A}-3 \mathrm{~A} \\
& j \omega 1 \times 10^{-3} \mathrm{~V}_{2}=3 \mathrm{~A}-2 \mathrm{~A} \\
& j \omega 3 \times 10^{-3} \mathrm{~V}_{3}=2 \mathrm{~A}-1 \mathrm{~A}
\end{aligned}
$$

(c) The circuit that gives these node-voltage equations is as shown.

Note that if a current K is added to each of the

2 A
three current sources in the clockwise direction, so they become $1+K, 3+K$, and $2+K$, the node-voltage equations are not affected. By choosing a suitable value of K, one of the current sources can be eliminated. Thus, $K=-1$, for example, eliminates the source on the left, the source on the right becomes 2 A , and the bottom source becomest A. This corresponds to subtracting 1 V from each of the Y -connected sources " in "the originalu circutst, withich would wambuclife" the 1 V source to zero.

Connection-wise, the dual of three voltage source in wye is three current sources in delta, and the dual of three inductors in delta is three capacitors in wye. The dual circuit can be derived by means of the graphical procedure as shown. The polarity of a current source is towards a node if the
 voltage source it replaces is a voltage rise in the direction of the clockwise mesh current.

