Homework 2

P10.2.4 In the circuit of Figure P10.2.4, the magnitude of the transfer function is unity at $1 \mathrm{Mrad} / \mathrm{s}$ and zero at 0.5 $\mathrm{Mrad} / \mathrm{s}$. Determine L_{1} and L_{2}.

Figure P10.2.4
Solution P10.2.4 At $1 \mathrm{Mrad} / \mathrm{s}, L_{1}$ is in
series resonance with the 10 nF capacitor; hence $L_{1}=\frac{1}{10^{-8} \times 10^{12}}=10^{-4} \mathrm{H}$, so $L_{1}=$ 0.1 mH . At $0.5 \mathrm{Mrad} / \mathrm{s}$, the reactance of L_{1} and C is capacitive and is in parallel resonance with L_{2}. The reactance of L_{1} and C at $0.5 \mathrm{Mrad} / \mathrm{s}$ is $0.5 \times 10^{6} \times 10^{-4}$ -
$\frac{1}{0.5 \times 10^{6} \times 10^{-8}}=50-200=-150 ;$ hence, $0.5 \times 10^{6} \times L_{2}=150$, or $L_{2}=\frac{150}{0.5 \times 10^{6}}=$ $300 \times 10^{-6}=0.3 \mathrm{mH}$.

P10.2.7 Determine: (a) the transfer function of the circuit of Figure P6.10.2.7; (b) the resonant frequency; (c) the Q; and (d) the bandwidth.

Figure P10.2.7
Solution P10.2.7 (a) $H(s)=\frac{160}{0.04 s+200+\frac{1}{s \times 0.04 \times 10^{-6}}}=\frac{4000 s}{s^{2}+5000 s+625 \times 10^{6}}=$ $\frac{4 s}{s^{2}+5 s+625}$, where s is in $\mathrm{krad} / \mathrm{s}$.
(b) $\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{40 \times 10^{-3} \times 4 \times 10^{-8}}}=25 \mathrm{krad} / \mathrm{s}$.
(c) $Q=\frac{\omega_{0} L}{R}=\frac{25 \times 10^{3} \times 0.04}{200}=5$; (d) $B W=\frac{\omega_{0}}{Q}=\frac{25}{5}=5 \mathrm{krad} / \mathrm{s}$.

P10.2.9 Given the circuit of Figure

P10.2.9, where k is a positive constant. Determine Q when:
(a) $k=1$; (b) k is very large. What is the interpretation of the value of Q when k is large?

Figure P10.2.9

Solution P10.2.9 Q can be determined from the denominator in standard form of the transfer function $V_{O}(j \omega) / V_{S R C}(j \omega)$. The transfer function can be determined from node-voltage analysis, mesh-current analysis, or voltage division.

To apply voltage division, the parallel impedance of the three branches between V_{a} and ground is:
$\frac{1 / s C(k R+k / s C)}{k R+(k+1) / s C}=$

$\frac{1}{s C} \frac{(1+s C R)}{(1+1 / k)+s C R}$. It follows that: $\frac{V_{\mathrm{a}}(j \omega)}{V_{S R C}(j \omega)}=\frac{\frac{1}{s C} \frac{(1+s C R)}{(1+1 / k)+s C R}}{R+\frac{1}{s C} \frac{(1+s C R)}{(1+1 / k)+s C R}}=$
$\frac{(1+s C R)}{1+(2+1 / k) s C R+s^{2} C^{2} R^{2}} ; \frac{V_{0}(j \omega)}{V_{a}(j \omega)}=\frac{k / s C}{k R+k / s C}=\frac{1}{1+s C R}$. Hence,
$\frac{V_{0}(j \omega)}{V_{S R C}(j \omega)}=\frac{1}{s^{2} C^{2} R^{2}+(2+1 / k) s C R+1}=\frac{1 / C^{2} R^{2}}{s^{2}+(2+1 / k) s / C R+1 / C^{2} R^{2}}$. This is of the standard for for a second-order low-pass filter $\frac{\omega_{n}^{2}}{s^{2}+\left(\omega_{n} / Q\right) s+\omega_{n}^{2}}$, where $\omega_{n}=1 / C R$ and $Q=1 /(2+1 / k)$.
(a) If $k=1, Q=1 / 3$.
(b) if k is very large, $Q=1 / 2$. The interpretation is that when k is large, the circuit composed of $k R$ and C / k has a negligible loading effect on the first circuit. The two circuits, of identical time constant $R C$, are cascaded but effectively isolated. The overall transfer function becomes:

$$
\frac{V_{0}(j \omega)}{V_{S R C}(j \omega)}=\frac{1}{(1+s C R)^{2}}=\frac{1}{1+2 s C R+s^{2} C^{2} R^{2}}=\frac{1 / C^{2} R^{2}}{s^{2}+2 s / C R+1 / C^{2} R^{2}}, Q=1 / 2 .
$$

P10.2.10 In Figure P10.2.10, the response $I_{C}(j \omega) / I_{\text {SRC }}(j \omega)$ is to remain at -3db at the same frequency, whether the switch is opened or closed. (a)
Determine R and the corner frequency, assuming $L=20 \mathrm{mH}$. (b)

Figure P10.2.10

Calculate the response in dB at one-tenth the corner frequency for the two cases when the switch is open or closed.
Solution P10.2.10 (a) When the switch is open, $\frac{I_{C}(s)}{I_{S R C}(s)}=\frac{s C R}{1+s C R}=\frac{1}{1+1 / s C R}$, and $\omega_{c h}=$ $\frac{1}{C R}=\frac{10^{6}}{R}$. When the switch is closed,
$\frac{I_{C}(s)}{I_{S R C}(s)}=\frac{s C}{s C+\frac{1}{R}+\frac{1}{s L}}=$

$\frac{s^{2}}{s^{2}+\frac{s}{C R}+\frac{1}{L C}} ; H(j \omega) \left\lvert\,=\frac{\omega^{2}}{\sqrt{\left(\omega^{2}-\frac{1}{L C}\right)^{2}+\left(\frac{\omega}{C R}\right)^{2}}}\right.$. At $\omega=\omega_{c h},|H(j \omega)|=\frac{1}{\sqrt{2}}$ or
$2 \omega_{c h}^{4}=\omega_{c h}^{4}-\frac{2 \omega_{c h}^{2}}{L C}+\frac{1}{L^{2} C^{2}}+\frac{\omega_{c h}^{2}}{C^{2} R^{2}}$. Substituting $\omega_{c h}^{2}=\frac{1}{C^{2} R^{2}}$ gives: $\omega_{c h}^{2}=\frac{1}{2 L C}$.
With $C=10^{-6} \mathrm{~F}$ and $L=2 \times 10^{-2} \mathrm{H}, \omega_{c h}=5 \mathrm{krad} / \mathrm{s}$ and $R=\frac{10^{6}}{\omega_{c h}}=\frac{10^{6}}{5 \times 10^{3}}=200 \Omega$.
(b) At $\omega_{c h} / 10$, the response when the switch is open is $20 \log _{10} \frac{1}{\sqrt{1+\left(\omega_{c h} / \omega\right)^{2}}}=$ $20 \log _{10} \frac{1}{\sqrt{101}}=-20.04 \mathrm{~dB}$. When the switch is closed, $\frac{1}{L C}=2 \omega_{c h}^{2}$ and $\frac{1}{C R}=\omega_{c h}$.

This gives: $\left|H\left(j 0.1 \omega_{\mathrm{ch}}\right)\right|=\frac{1}{\sqrt{\left(1-\frac{1}{\omega^{2} L C}\right)^{2}+\left(\frac{1}{\omega C R}\right)^{2}}}=$
$\frac{1}{\sqrt{\left(1-\frac{2 \omega_{c h}^{2}}{\left(0.1 \omega_{c h}\right)^{2}}\right)^{2}+\left(\frac{\omega_{c h}}{0.1 \omega_{c h}}\right)^{2}}}=\frac{1}{199.25}$, and $20 \log _{10} \frac{1}{199.25}=-46 \mathrm{~dB}$.

P10.3.3 Derive the transfer function of the circuit shown in Figure P10.3.3, and determine L and C so as to have a secondorder, lowpass, normalized,
Butterworth response. Scale the

Figure P10.3.3 parameters so as to have $R_{L}=10 \mathrm{k} \Omega$ and the $3-\mathrm{dB}$ frequency $f_{0}=10 \mathrm{kHz}$.
$\underline{\text { Solution P10.3.3 }}$ The impedance of C in parallel with L and R_{2} is: $Z_{p}=\frac{\left(s L+R_{2}\right) / s C}{s L+R_{2}+1 / s C}=$
$\frac{s L+R_{2}}{s^{2} L C+s C R_{2}+1}$. It follows that: $\frac{V_{0}}{V_{S R C}}=\frac{Z_{p}}{R_{1}+Z_{p}} \frac{R_{2}}{s L+R_{2}}=$ $\frac{R_{2}}{L C R_{1}} \frac{1}{s^{2}+s\left(\frac{1}{C R_{1}}+\frac{R_{2}}{L}\right)+\frac{1}{L C} \frac{R_{1}+R_{2}}{R_{1}}}$ Substituting $R_{1}=2 \Omega$ and $R_{2}=1 \Omega$, the denominator becomes: $s^{2}+s\left(\frac{1}{2 C}+\frac{1}{L}\right)+\frac{3}{2 L C}$. For a Butterworth response, $L C=\frac{3}{2}$ and $\frac{1}{2 C}+\frac{1}{L}=\sqrt{2}$. Substituting $\frac{1}{2 C}=\frac{L}{3}$, gives $\frac{L}{3}+\frac{1}{L}=\sqrt{2}$, or $L^{2}-3 \sqrt{2} L+3=0$. Hence, $L=\frac{\sqrt{6}}{2}(\sqrt{3} \pm 1) \mathrm{H}$ and $C=\frac{\sqrt{6}}{4}(\sqrt{3} \mp 1) \mathrm{F}$.

To scale, $R_{L}=R_{2}$ to $10 \mathrm{k} \Omega, k_{m}=10^{4}$. For a normalized butterworth response, the 3dB cut-off frequency is $1 \mathrm{rad} / \mathrm{s}$. To scale $f_{n}=10 \mathrm{kHz}, k_{f}=2 \pi \times 10^{4}$; hence, $L^{\prime}=\frac{k_{m}}{k_{f}} L \equiv \frac{\sqrt{6}}{4 \pi}(\sqrt{3} \pm 1) H$ and $C^{\prime}=\frac{1}{k_{m} k_{f}} C \equiv \frac{5 \sqrt{6}}{4 \pi}(\sqrt{3} \mp 1) n F$.

Note that for a Butterworth filter, the corner frequency is the same as the -3dB cutoff frequency, the latter being always the same as the half-power frequency.

P10.4.4 Given the straight-line, Bode plot approximation of Figure
P10.4.4. Determine: (a) the $X \mathrm{~dB}$ level; (b) the transfer function approximated by this Bode plot.

Solution P10.4.4 (a) Since the plot drops 20 dB in a

Figure P10.4.4 decade from the 20 dB level, X must be at 0 dB .
(b) The response from very low frequencies up to $\omega=10^{4} \mathrm{rad} / \mathrm{s}$ is a first-order highpass response having $\omega_{\text {ch }}=10^{2} \mathrm{rad} / \mathrm{s}$. The transfer function up to $\omega=10^{4} \mathrm{rad} / \mathrm{s}$ is of the form $K \frac{j \omega}{j \omega+\omega_{c h}}=K \frac{s}{s+10^{2}}$. At $\omega=10^{4} \mathrm{rad} / \mathrm{s}$ there is a response of the form $\frac{1}{j \omega+10^{4}}=\frac{1}{s+10^{4}}$ so that a corner frequency is obtained at $\omega=10^{4} \mathrm{rad} / \mathrm{s}$, the response is 0 dB for $\omega<10^{4} \mathrm{rad} / \mathrm{s}$ and the response decreases at a rate of $-20 \mathrm{~dB} / \mathrm{decade}$ for $\omega>10^{4} \mathrm{rad} / \mathrm{s}$. At $\omega=10^{5} \mathrm{rad} / \mathrm{s}$ there is a response of the form $j \omega+10^{5}=s+10^{5}$, so that a corner frequency is obtained at $\omega=10^{5} \mathrm{rad} / \mathrm{s}$, the response is 0 dB for $\omega<10^{5} \mathrm{rad} / \mathrm{s}$ and the response increases at a rate of +20 $\mathrm{dB} /$ decade for $\omega>10^{5} \mathrm{rad} / \mathrm{s}$ so as to give a horizontal asymptote $\omega>10^{5} \mathrm{rad} / \mathrm{s}$. At $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ there is a response of the form $\frac{1}{j \omega+10^{6}}=\frac{1}{\mathrm{~s}+10^{6}}$ so that a corner frequency is obtained at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$, the response is 0 dB for $\omega<10^{6}$ $\mathrm{rad} / \mathrm{s}$ and the response decreases at a rate of $-20 \mathrm{~dB} /$ decade for $\omega>10^{6} \mathrm{rad} / \mathrm{s}$.

The transfer function is of the form: $H(s)=\frac{K s\left(s+10^{5}\right)}{(s+100)\left(s+10^{4}\right)\left(s+10^{6}\right)}$. To
determine K, we note that at very low frequencies, $H(s) \approx \frac{K s \times 10^{5}}{10^{2} \times 10^{4} \times 10^{6}}$. The line passes through the point (100 rad/s, 20 dB) so that $|H(\mathrm{~s})|=10$ at $\omega=100$ $\mathrm{rad} / \mathrm{s}$. This gives $K=\frac{10 \times 10^{12}}{10^{2} \times 10^{5}}=\frac{10^{13}}{10^{7}}=10^{6}$.

