EECE 290 Analog Signal Processing - Quiz 2

April 9, 2011

1. The initial values at $t=0$ of i_{L} and i_{R} are: $i_{L}=0$ and $i_{R}=K \mathrm{~A}$. Determine $\frac{d i_{L}}{d t}$ at $t=0$.

Solution: $v=L \frac{d i_{L}}{d t}$, where $v=-10 K$. Substituting,

$\frac{d i_{L}}{d t}=\frac{v}{L}=-\frac{10 K}{4}-2.5 K \mathrm{~A} / \mathrm{s}$.
Version 1: $K=1, \frac{d i_{L}}{d t}=-2.5 K=-2.5 \mathrm{~A} / \mathrm{s}$
Version 2: $K=2, \frac{d i_{L}}{d t}=-2.5 K=-5 \mathrm{~A} / \mathrm{s}$
Version 3: $K=3, \frac{d i_{L}}{d t}=-2.5 K=-7.5 \mathrm{~A} / \mathrm{s}$

Version 4: $K=4, \frac{d i_{L}}{d t}=-2.5 K=-10 \mathrm{~A} / \mathrm{s}$
Version 5: $K=5, \frac{d i_{L}}{d t}=-2.5 K=-12.5 \mathrm{~A} / \mathrm{s}$
2. Determine $\frac{d i_{R}}{d t}$ at $t=0$ in Problem 1.

Solution: $v=-10 i_{R}, \frac{d i_{R}}{d t}=-\frac{1}{10} \frac{d v}{d t} ; \frac{d v}{d t}=\frac{i_{C}}{C}=\frac{i_{R}}{C}=\frac{K}{2}$.
Substituting, $\frac{d i_{R}}{d t}=-\frac{K}{20} \mathrm{~A} / \mathrm{s}=-50 K \mathrm{~mA} / \mathrm{s}$.
Version 1: $K=1, \frac{d i_{R}}{d t}=-50 K=-50 \mathrm{~mA} / \mathrm{s}$

Version 2: $K=2, \frac{d i_{R}}{d t}=-50 K=-100 \mathrm{~mA} / \mathrm{s}$
Version 3: $K=3, \frac{d i_{R}}{d t}=-50 K=-150 \mathrm{~mA} / \mathrm{s}$
Version 4: $K=4, \frac{d i_{R}}{d t}=-50 K=-200 \mathrm{~mA} / \mathrm{s}$
Version 5: $K=5, \frac{d i_{R}}{d t}=-50 K=-250 \mathrm{~mA} / \mathrm{s}$
3. Which of the following statements is true of the voltage v_{C} across C for large values of t in Problem 1?
Version 1: v_{C} approaches zero as an underdamped response
Version 2: v_{C} approaches a finite value as an underdamped response
Version 3: v_{C} approaches zero as an overdamped response
Version 4: v_{C} approaches a finite value as an overdamped response
Version 5: v_{C} approaches zero as a critically damped response
Solution: The circuit is a parallel circuit; $\alpha_{p}=\frac{1}{2 C_{p} R_{p}}=\frac{1}{2 \times 2 \times 10}=0.025$; $\omega_{0}=\frac{1}{\sqrt{L_{p} C_{p}}}=\frac{1}{\sqrt{8}}=0.354$. Since α_{p} is less than ω_{0}, the response is oscillatory. Because of the dissipating element, all responses in the circuit will eventually become zero. Hence, v_{C} approaches zero as an underdamped response.
4. A pulse of amplitude A units and 1 s duration, starting at the origin, is convolved with itself. Determine the value of the convolution integral at $t=1.8 \mathrm{~s}$.
Solution: Let the amplitude of the pulse be A. When one pulse is folded about the vertical axis and shifted by $t=1.8 \mathrm{~s}$, the graphical construction becomes as shown. The integration area is $y(t)=A \times A \times 0.2=0.2 A^{2}$.
Version 1: $A=1, y(t)=0.2 A^{2}=0.2 \times 1=0.2$

Version 2: $A=1.5, y(t)=0.2 A^{2}=0.2 \times 2.25=0.45$
Version 3: $A=2, y(t)=0.2 A^{2}=0.2 \times 4=0.8$
Version 4: $A=2.5, y(t)=0.2 A^{2}=0.2 \times 6.25=1.25$
Version 5: $A=3, y(t)=0.2 A^{2}=0.2 \times 9=1.8$
5. The delayed triangular pulse of unit height is convolved with the step function $A u(t-2)$. Determine which of the following choices is a valid convolution integral for $t \geq 5 \mathrm{~s}$.
Solution: Let the amplitude of the step be A. When the step is folded about the vertical axis and shifted by $t=5 \mathrm{~s}$, the graphical construction becomes as shown for $A=1$. The integration area is A times the area of the triangle, which is 1 . Thus, $y(t)=A u(t-5)$,
 since this value is valid for $t \geq 5$.
Version 1: $A=1, y(t)=A u(t-5)=u(t-5)$

Version 2: $A=2, y(t)=A u(t-5)=2 u(t-5)$
Version 3: $A=3, y(t)=A u(t-5)=3 u(t-5)$
Version 4: $A=4, y(t)=A u(t-5)=4 u(t-5)$
Version 5: $A=5, y(t)=A u(t-5)=5 u(t-5)$

4\%
6. Given that $i_{S R C}=K \delta(t)$ As. Determine v as a function of t for $t \geq 0^{+}$.
Solution: The current through R is numerically equal to v, the same as the current of the dependent source. This makes $i_{L}=0$ and node a at the same voltage as a^{\prime}. A current impulse $K \delta(t)$ is thus applied to 1Ω in parallel with 1 F . At t $=0^{+}$, the impulse deposits a charge K coulombs, which gives an initial voltage

$v(0)=K / 1 \mathrm{~V}$ across the capacitor. It follows that for $t \geq 0^{+}, v(t)=K e^{-t} \mathrm{~V}$.
Version 1: $K=0.5, v(t)=K e^{-t}=0.5 e^{-t} V$
Version 2: $K=1, v(t)=K e^{-t}=e^{-t} V$
Version 3: $K=1.5, v(t)=K e^{-t}=1.5 e^{-t} V$
Version 4: $K=2, v(t)=K e^{-t}=2 e^{-t} \mathrm{~V}$
Version 5: $K=2.5, v(t)=K e^{-t}=2.5 e^{-t} \mathrm{~V}$
7. Determine the quantity of charge that flows through the $1 \mathrm{k} \Omega$ resistor, and its direction of flow, from when the switch is closed at $t=0$, to $t \rightarrow \infty$, assuming $v=1 \mathrm{~V}$.

Solution: $C_{\text {eqs }}=1 \mu \mathrm{~F}$; the charge that flows through the 1
$\mathrm{k} \Omega$ resistor is the charge on this capacitor, which is $q=$
$1 \times 3 v \mu \mathrm{C}$. As a check, the initial charges on C_{1} and C_{2} are, respectively, $2 \times v$ and $2 \times 2 v \mu \mathrm{C}$.
The final charges are $2 v-3 v=-v \mu \mathrm{C}$ and $4 v-3 v=v \mu \mathrm{C}$, so the voltages are equal and opposite at $-v / 2$ and $+v / 2$.
Version 1: $v=1, q=3 v=3 \mu \mathrm{C}$
Version 2: $v=2, q=3 v=6 \mu \mathrm{C}$
Version 3: $v=3, q=3 v=9 \mu \mathrm{C}$

Version 4: $v=4, q=3 v=12 \mu \mathrm{C}$
Version 5: $v=5, q=3 v=15 \mu \mathrm{C}$
8. Determine the energy dissipated in the resistor from $t=0$ to $t \rightarrow \infty$ in Problem 7 .

Solution: Method 1: The power dissipated is that stored in $C_{\text {eqs }}$, where $C_{\text {eqs }}=1 \mu \mathrm{~F}$, the initial voltage is $3 v$ and the charge on this capacitor is $3 v \mu \mathrm{C}$. The stored energy is $w=q v / 2=$ $4.5 v^{2} \mu \mathrm{~J}$.
Method 2: The initial current through the resistor is $3 \mathrm{v} / 1=3 \mathrm{vmA}$. As a function of time, the current is $3 v e^{-t / \tau} \mathrm{mA}$, where $\tau=(1 \mu \mathrm{~F}) \times(1 \mathrm{k} \Omega)=1 \mathrm{~ms}$, so that t is in ms. The energy dissipated is $\int_{0}^{\infty} 9 v^{2} \times 1 \times e^{-2 t / \tau} d t$. The dimensions of the integrand are $(\mathrm{mA})^{2} \times \mathrm{k} \Omega \times \mathrm{ms}$, which is $\mu \mathrm{J}$. The value is $\left[-4.5 v^{2} e^{-2 t / \tau}\right]_{0}^{\circ}=4.5 v^{2} \mu \mathrm{~J}$.
Version 1: $v=1, w=4.5 v^{2}=4.5 \mu \mathrm{~J}$
Version 2: $v=2, w=4.5 v^{2}=18 \mu \mathrm{~J}$
Version 3: $v=3, w=4.5 v^{2}=40.5 \mu \mathrm{~J}$
Version 4: $v=4, w=4.5 v^{2}=72 \mu \mathrm{~J}$
Version 5: $v=5, w=4.5 v^{2}=112.5 \mu \mathrm{~J}$
9. The response of a circuit to a unit step is $k t e^{-t / 10}$, where t is in s . Determine the response at $t=10 \mathrm{~s}$ to an impulse applied at $t=5 \mathrm{~s}$.
Solution: The response to an impulse at $t=0$ is the time derivative of the response to a unit impulse and is: $k e^{-t / 10}-(k / 10) t e^{-t / 10}$. The response to an impulse at $t=5 \mathrm{~s}$ is $k e^{-(t-5) / 10}[1-(t-5) / 10]$. The response at $t=10 \mathrm{~s}$ is $k e^{-(10-5) / 10}[1-(10-5) / 10]=0.5 \mathrm{ke}^{-0.5}$.
Version 1: $k=1,0.5 k e^{-0.5}=0.303$
Version 2: $k=2,0.5 k e^{-0.5}=0.607$
Version 3: $k=3,0.5 k e^{-0.5}=0.910$
Version 4: $k=4,0.5 k e^{-0.5}=1.21$
Version 5: $k=5,0.5 k e^{-0.5}=1.52$
10. The switch is closed at $t=0$ after being open for a long time. Determine i_{R} as a function of time, assuming $I_{S R C}=1 \mathrm{~A}$.

Solution: After the switch has been open for a long time, $V_{C}=6 l_{\text {SRC }}$. After the switch is closed, the initial value of i_{R} is $-2 I_{S R C}$. The final value of i_{R} is zero. The time constant, with the switch closed, is $\left(3|\mid 6) \times 1=2 \mathrm{~s}\right.$. Hence, $i_{R}=$
$-21_{S R C} e^{-t / 2}$
Version 1: $I_{S R C}=1 \mathrm{~A}, i_{R}=-2 I_{S R C} e^{-t / 2}=-2 e^{-t / 2} \mathrm{~A}$

Version 2: $I_{S R C}=2 \mathrm{~A}, i_{R}=-2 I_{S R C} e^{-t / 2}=-4 e^{-t / 2} \mathrm{~A}$
Version 3: $I_{S R C}=3 \mathrm{~A}, i_{R}=-2 I_{S R C} e^{-t / 2}=-6 e^{-t / 2} \mathrm{~A}$
Version 4: $I_{S R C}=4 \mathrm{~A}, i_{R}=-2 I_{S R C} e^{-t / 2}=-8 e^{-t / 2} \mathrm{~A}$
Version 5: $I_{S R C}=5 \mathrm{~A}, i_{R}=-2 I_{S R C} e^{-t / 2}=-10 e^{-t / 2} \mathrm{~A}$
11. A current impulse of $K \mathrm{mAs}$ is applied at t $=0$, with zero initial conditions.
6% (a) Determine the values of v_{C} and i_{L} at $t=$ 0^{+}.
7% (b) Derive the form of the expression for i_{L} as a function of time for $t>0^{+}$in terms
 of the two arbitrary constants of the differential equation. Assume that these arbitrary constants are unknown but specify the values of all other quantities in the expression for i_{L}.
7% (c) Determine the values of the arbitrary constants assuming, $v_{C}=200 \mathrm{~V}$ and $i_{L}=1 \mathrm{~A}$ at t $=0^{+}$.

Solution: (a) The current source impulse in parallel with $R \Omega$ can be transformed to a voltage source impulse of $(K R) \delta(t)$ Vs in series with R. As argued in the book for a series $R L C$ circuit, the voltage impulse appears across L and produces a jump in i_{L} equal to $K R / L=$ $K \times 10^{-3} \times 10^{3} /(0.1)=10 \mathrm{~K}$ A. The finite jump in i_{L} does not change v_{C}, which remains at zero. Alternatively, it can be argued that the current impulse will flow through R and not through L and C. If the current impulse flows through L and C, v_{C} will jump in value by a finite amount, and the voltage across L will change proportionately to $\delta^{(1)}(t)$. The voltage across L and C will be inconsistent with the voltage across R, which can be only be proportional to either $\delta(t)$ or to a finite quantity.

The current impulse through R will cause a voltage impulse $K R \delta(t)$ across R. This impulse will appear across L and cause a jump in current of $K R / L$.
(b) For $t>0^{+}$, the source is zero, and the circuit reduces to a series RLC circuit.
$\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.1 \times 0.625 \times 10^{-6}}}=4 \mathrm{krad} / \mathrm{s} ; \alpha=\frac{R}{2 L}=\frac{1000}{2 \times 0.1}=5 \mathrm{krad} / \mathrm{s}$. Since $\alpha>\omega_{0}$, the response is overdamped, $s_{1}=-5+\sqrt{5^{2}-4^{2}}=-2 \mathrm{krad} / \mathrm{s}$ and $s_{2}=-5-\sqrt{5^{2}-4^{2}}=-8$ $\mathrm{krad} / \mathrm{s}$. It follows that $i_{L}=A e^{-2 t}+B e^{-8 t} \mathrm{~A}$, where t is in ms .
(c) At $t=0^{+}, A+B=1 ; q=-\frac{A}{2000} e^{-2000 t}-\frac{B}{8000} e^{-8000 t} C$, where the constant of integration is zero since $q \rightarrow 0$ as $t \rightarrow \infty$; at $t=0^{+}, v_{C}=\frac{q}{C}-\frac{A \times 10^{3}}{1.25}-, \frac{B \times 10^{3}}{5}$ or $200=-\frac{A \times 10^{3}}{1.25}-\frac{B \times 10^{3}}{5}$, or $4 A+B=-1$. This gives $A=-2 / 3 A$ and $B=5 / 3 A$.

Alternatively, $v_{L}=L \frac{d_{i_{L}}}{d t}=0.1\left(-2 A e^{-2 t}-8 B e^{-8 t}\right) \mathrm{H} \times \mathrm{A} / \mathrm{ms}$, or $v_{L}=100\left(-2 A e^{-2 t}-8 B e^{-8 t}\right) \mathrm{V}$, or $-v_{L} / 100=2 A+8 B$ at $t=0^{+}$. But $v_{L}+v_{C}+v_{R}=0$, or $-v_{L}=v_{C}+v_{R}$. This gives, $2 A+8 B=$ $(200+1000) / 100$. Hence, $A+4 B=6$, which gives the same values for A and B.
Version 1: (a) $K=0.1 ; i_{L}\left(0^{+}\right)=10 K=1 \mathrm{~A}, v_{C}\left(0^{+}\right)=0$
Version 2: (a) $K=0.2 ; i_{L}\left(0^{+}\right)=10 K=2 \mathrm{~A}, v_{C}\left(0^{+}\right)=0$
Version 3: (a) $K=0.3 ; i_{L}\left(0^{+}\right)=10 K=3 \mathrm{~A}, v_{C}\left(0^{+}\right)=0$
Version 4: (a) $K=0.4 ; i_{L}\left(0^{+}\right)=10 K=4 \mathrm{~A}, v_{C}\left(0^{+}\right)=0$
Version 5: (a) $K=0.5 ; i_{L}\left(0^{+}\right)=10 K=5 \mathrm{~A}, v_{C}\left(0^{+}\right)=0$
12. Given the two functions $f(t)$ and $g(t)$ shown.
15% (a) Sketch $y(t)=$ $f(t) * g(t)$ as function of t.
5\%
(b) Verify $y(t)$ from the product of two
 polynomials.
Solution: (a) When $f(t)$ is folded, it becomes as shown. The convolution integral is zero until $t=3$, when side aa' coincides with $g(1)$. At $t=4$, aa' coincides with $g(2)$, and the area under the product of the two functions is $3 \times 2=6$. At $t=5$, aa'
 coincides with $g(3)$, and the area under the product of the two functions is $3 \times 2-1 \times 2=4$. At $t=6$, aa' coincides with $g(4)$, and the area
under the product of the two functions is $1 \times 2+2 \times 2=2$. At $t=7$, bb' coincides with $g(3)$, and the area under the product of the two functions is $2 \times 2=4$. At $t=8$, bb' coincides with $g(4)$, and the area under the product of the two functions is back to zero. The convolution function $y(t)$ is as
 shown.
(b) To derive $y(t)$ In terms of a polynomial, $f(t)$ and $g(t)$ are assumed to both start at $t=0 . f(t)$ is divided into two successive 1 s intervals, each of amplitude 2 units. Thus, as polynomials in $x, f(x)=2 x+2$, and $g(x)=3 x^{2}-x+2$. The product $f(x) g(x)=6 x^{3}+4 x^{2}+2 x+4$. The nonzero breakpoints are thus at $(1,6),(2,4),(3,2)$, and $(4,4)$. For the given functions, the total shift in time from the origin is 3 s . Because the system is linear and time-invariant, as assumed in the derivation of the convolution integral, the 3 s is added to the time coordinates of the breakpoints from the product of polynomials to give the non-zero breakpoints of $y(t)$ in the figure.
13. The switch is moved at $t=0$ after having been in the first position for a long time, with $i_{L 1}$ initially zero. Determine, as a function of t, for $t \geq 0^{+}$:
10% (a) $i_{R 1}$
10% (b) $i_{L 1}$

Solution: After switching, the circuit becomes as shown, where at $t=0^{+}: i_{L 2}=12 / 4=3 \mathrm{~A}, i_{L 1}$ $=0, i_{R}=3 \mathrm{~A}, v=3 \times 2=6 \mathrm{~V}$. As $t \rightarrow \infty, v=0$. The time constant is $\left(2|\mid 3) / 2=1.2 / 2=0.6 \mathrm{~s}\right.$. Hence $v=6 e^{-t / 0.6} \mathrm{~V}$.
(a) It follows that $i_{R 1}=-\frac{v}{6}=-e^{-t / 0.6} \mathrm{~A}$
(b) $i_{L 1}$ can be determined from conservation of flux linkage in the
 loop formed by the two inductors. At $t=0^{+}$, going clockwise around the loop, the total flux linkage is $3 \times 2+0=6 \mathrm{~Wb}-\mathrm{T}$. As $t \rightarrow \infty$, the currents in the two inductors are equal in magnitude. Going clockwise around the loop, $i_{L 2} \times 5=6 \mathrm{~Wb}-\mathrm{T}$, so that $i_{L 1}=-i_{L 2}=-1.2 \mathrm{~A}$. It follows that $i_{L 1}=-1.2+(0+1.2) e^{-t / 0.6}=-1.2\left(1-e^{-t / 0.6}\right) \mathrm{A}$.

Alternatively, $i_{L 1}=-\frac{1}{L} \int_{0}^{t} v d t+i_{L 1}(0)=-\frac{1}{3} \int_{0}^{t} 6 e^{-t / 0.6} d t=-2\left[-e^{-t / 0.6}\right]_{0}^{t}=-1.2\left(1-e^{-t / 0.6}\right) \mathrm{A}$.

