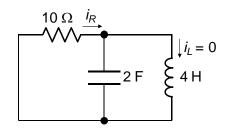
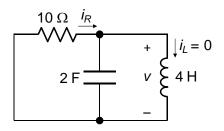
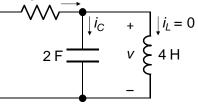
EECE 290 Analog Signal Processing – Quiz 2 April 9, 2011

1. The initial values at t = 0 of i_L and i_R are: $i_L = 0$ and $i_R = KA$. Determine $\frac{di_L}{dt}$ at t = 0. Solution: $v = L \frac{di_L}{dt}$, where v = -10K. Substituting, $\frac{di_L}{dt} = \frac{v}{L} = -\frac{10K}{4} - 2.5K$ A/s. Version 1: K = 1, $\frac{di_L}{dt} = -2.5K = -2.5$ A/s Version 2: K = 2, $\frac{di_L}{dt} = -2.5K = -5$ A/s Version 3: K = 3, $\frac{di_L}{dt} = -2.5K = -7.5$ A/s Version 4: K = 4, $\frac{di_L}{dt} = -2.5K = -10$ A/s Version 5: K = 5, $\frac{di_L}{dt} = -2.5K = -12.5$ A/s





2. Determine
$$\frac{di_R}{dt}$$
 at $t = 0$ in Problem 1.
Solution: $v = -10i_R$, $\frac{di_R}{dt} = -\frac{1}{10}\frac{dv}{dt}$; $\frac{dv}{dt} = \frac{i_C}{C} = \frac{i_R}{C} = \frac{K}{2}$.
Substituting, $\frac{di_R}{dt} = -\frac{K}{20}$ A/s = -50K mA/s.
Version 1: $K = 1$, $\frac{di_R}{dt} = -50K = -50$ mA/s
Version 2: $K = 2$, $\frac{di_R}{dt} = -50K = -100$ mA/s
Version 3: $K = 3$, $\frac{di_R}{dt} = -50K = -150$ mA/s
Version 4: $K = 4$, $\frac{di_R}{dt} = -50K = -200$ mA/s
Version 5: $K = 5$, $\frac{di_R}{dt} = -50K = -250$ mA/s



3. Which of the following statements is true of the voltage v_c across *C* for large values of *t* in Problem 1?

Version 1: v_C approaches zero as an underdamped response

Version 2: v_C approaches a finite value as an underdamped response

Version 3: v_C approaches zero as an overdamped response

Version 4: v_C approaches a finite value as an overdamped response

Version 5: v_C approaches zero as a critically damped response

Solution: The circuit is a parallel circuit; $\alpha_p = \frac{1}{2C_pR_p} = \frac{1}{2 \times 2 \times 10} = 0.025$;

 $\omega_0 = \frac{1}{\sqrt{L_p C_p}} = \frac{1}{\sqrt{8}} = 0.354$. Since α_p is less than ω_0 , the response is oscillatory. Because of

the dissipating element, all responses in the circuit will eventually become zero. Hence, v_c approaches zero as an underdamped response.

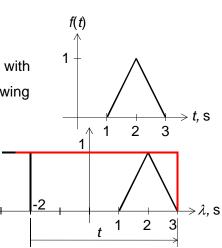
4. A pulse of amplitude *A* units and 1 s duration, starting at the origin, is convolved with itself. Determine the value of the convolution integral at t = 1.8 s.

Solution: Let the amplitude of the pulse be *A*. When one pulse is folded about the vertical axis and shifted by t = 1.8 s, the graphical construction becomes as shown. The integration area is $y(t) = A \times A \times 0.2 = 0.2A^2$. Version 1: A = 1, $y(t) = 0.2A^2 = 0.2 \times 1 = 0.2$ Version 2: A = 1.5, $y(t) = 0.2A^2 = 0.2 \times 2.25 = 0.45$ Version 3: A = 2, $y(t) = 0.2A^2 = 0.2 \times 4 = 0.8$ Version 4: A = 2.5, $y(t) = 0.2A^2 = 0.2 \times 6.25 = 1.25$ Version 5: A = 3, $y(t) = 0.2A^2 = 0.2 \times 9 = 1.8$

5. The delayed triangular pulse of unit height is convolved with the step function Au(t-2). Determine which of the following

choices is a valid convolution integral for $t \ge 5$ s. **Solution:** Let the amplitude of the step be *A*. When the step is folded about the vertical axis and shifted by t = 5 s, the graphical construction becomes as shown for A = 1. The integration area is *A* times the area of the triangle, which is 1. Thus, y(t) = Au(t-5), since this value is valid for $t \ge 5$.

Version 1: A = 1, y(t) = Au(t-5) = u(t-5)



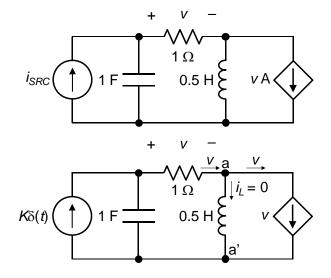
 $A \xrightarrow{2} \lambda, s$ $0.8 s \xrightarrow{t} t = 1.8 s$

Version 2: A = 2, y(t) = Au(t-5) = 2u(t-5)Version 3: A = 3, y(t) = Au(t-5) = 3u(t-5)Version 4: A = 4, y(t) = Au(t-5) = 4u(t-5)Version 5: A = 5, y(t) = Au(t-5) = 5u(t-5)

4%

6. Given that $i_{SRC} = K \partial(t)$ As. Determine *v* as a function of *t* for $t \ge 0^+$.

Solution: The current through *R* is numerically equal to *v*, the same as the current of the dependent source. This makes $i_L = 0$ and node a at the same voltage as a'. A current impulse $K\delta(t)$ is thus applied to 1 Ω in parallel with 1 F. At *t* = 0⁺, the impulse deposits a charge *K* coulombs, which gives an initial voltage



v(0) = K/1 V across the capacitor. It follows that for $t \ge 0^+$, $v(t) = Ke^{-t}$ V.

Version 1: K = 0.5, $v(t) = Ke^{-t} = 0.5e^{-t}$ V Version 2: K = 1, $v(t) = Ke^{-t} = e^{-t}$ V Version 3: K = 1.5, $v(t) = Ke^{-t} = 1.5e^{-t}$ V Version 4: K = 2, $v(t) = Ke^{-t} = 2e^{-t}$ V Version 5: K = 2.5, $v(t) = Ke^{-t} = 2.5e^{-t}$ V

Determine the quantity of charge that flows through the 1 kΩ resistor, and its direction of flow, from when the switch is closed at *t* = 0, to *t* → ∞, assuming *v* = 1 V.

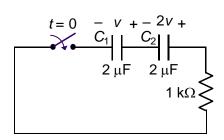
Solution: $C_{eqs} = 1 \ \mu\text{F}$; the charge that flows through the 1 k Ω resistor is the charge on this capacitor, which is q =

 $1 \times 3v \ \mu$ C. As a check, the initial charges on C_1 and C_2 are, respectively, $2 \times v$ and $2 \times 2v \ \mu$ C. The final charges are $2v - 3v = -v \ \mu$ C and $4v - 3v = v \ \mu$ C, so the voltages are equal and opposite at -v/2 and +v/2.

Version 1: v = 1, $q = 3v = 3 \mu C$

Version 2: v = 2, $q = 3v = 6 \mu C$

Version 3: v = 3, $q = 3v = 9 \ \mu C$



Version 4: v = 4, $q = 3v = 12 \ \mu C$ Version 5: v = 5, $q = 3v = 15 \ \mu C$

8. Determine the energy dissipated in the resistor from t = 0 to $t \to \infty$ in Problem 7. Solution: *Method 1:* The power dissipated is that stored in C_{eqs} , where $C_{eqs} = 1 \ \mu\text{F}$, the initial voltage is 3v and the charge on this capacitor is $3v \ \mu\text{C}$. The stored energy is $w = qv/2 = 4.5v^2 \ \mu\text{J}$.

Method 2: The initial current through the resistor is 3v/1 = 3v mA. As a function of time, the current is $3ve^{-t/\tau}$ mA, where $\tau = (1 \ \mu\text{F}) \times (1 \ \text{k}\Omega) = 1$ ms, so that *t* is in ms. The energy dissipated is $\int_0^\infty 9v^2 \times 1 \times e^{-2t/\tau} dt$. The dimensions of the integrand are $(\text{mA})^2 \times \text{k}\Omega \times \text{ms}$, which is μ J. The value is $\left[-4.5v^2e^{-2t/\tau}\right]_0^\infty = 4.5v^2 \ \mu$ J. Version 1: v = 1, $w = 4.5v^2 = 4.5 \ \mu$ J Version 2: v = 2, $w = 4.5v^2 = 18 \ \mu$ J Version 3: v = 3, $w = 4.5v^2 = 40.5 \ \mu$ J

Version 5: v = 5, $w = 4.5v^2 = 112.5 \,\mu\text{J}$

9. The response of a circuit to a unit step is $kte^{-t/10}$, where *t* is in s. Determine the response at *t* = 10 s to an impulse applied at *t* = 5 s.

Solution: The response to an impulse at t = 0 is the time derivative of the response to a unit impulse and is: $ke^{-t/10} - (k/10)te^{-t/10}$. The response to an impulse at t = 5 s is

 $ke^{-(t-5)/10}[1-(t-5)/10]$. The response at t = 10 s is $ke^{-(10-5)/10}[1-(10-5)/10] = 0.5ke^{-0.5}$.

Version 1: k = 1, $0.5ke^{-0.5} = 0.303$

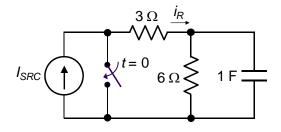
Version 2: k = 2, $0.5ke^{-0.5} = 0.607$

Version 3: k = 3, $0.5ke^{-0.5} = 0.910$

Version 4: k = 4, $0.5ke^{-0.5} = 1.21$

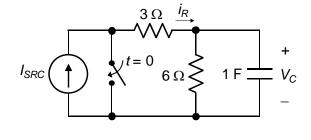
Version 5:
$$k = 5$$
, 0.5 $ke^{-0.5} = 1.52$

10. The switch is closed at t = 0 after being open for a long time. Determine i_R as a function of time, assuming $I_{SRC} = 1$ A.

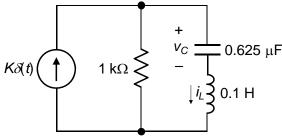


Solution: After the switch has been open for a long time, $V_c = 6I_{SRC}$. After the switch is

closed, the initial value of i_R is $-2I_{SRC}$. The final value of i_R is zero. The time constant, with the switch closed, is $(3||6)\times 1 = 2$ s. Hence, $i_R =$ $-2I_{SRC}e^{-t/2}$ Version 1: $I_{SRC} = 1$ A, $i_R = -2I_{SRC}e^{-t/2} = -2e^{-t/2}$ A Version 2: $I_{SRC} = 2$ A, $i_R = -2I_{SRC}e^{-t/2} = -4e^{-t/2}$ A Version 3: $I_{SRC} = 3$ A, $i_R = -2I_{SRC}e^{-t/2} = -6e^{-t/2}$ A Version 4: $I_{SRC} = 4$ A, $i_R = -2I_{SRC}e^{-t/2} = -8e^{-t/2}$ A Version 5: $I_{SRC} = 5$ A, $i_R = -2I_{SRC}e^{-t/2} = -10e^{-t/2}$ A



- **11.** A current impulse of K mAs is applied at t = 0, with zero initial conditions.
- 6% (a) Determine the values of v_c and i_L at $t = 0^+$.



- 7% (b) Derive the form of the expression for i_L as a function of time for $t > 0^+$ in terms of the two arbitrary constants of the differential equation. Assume that these arbitrary constants are unknown but specify the values of all other quantities in the expression for i_L .
- 7% (c) Determine the values of the arbitrary constants assuming, $v_c = 200$ V and $i_L = 1$ A at $t = 0^+$.

Solution: (a) The current source impulse in parallel with $R \Omega$ can be transformed to a voltage source impulse of $(KR)\delta(t)$ Vs in series with R. As argued in the book for a series RLC circuit, the voltage impulse appears across L and produces a jump in i_L equal to $KR/L = K \times 10^{-3} \times 10^{3}/(0.1) = 10K$ A. The finite jump in i_L does not change v_C , which remains at zero. Alternatively, it can be argued that the current impulse will flow through R and not through L and C. If the current impulse flows through L and C, v_C will jump in value by a finite amount, and the voltage across L will change proportionately to $\delta^{(1)}(t)$. The voltage across L and C will be inconsistent with the voltage across R, which can be only be proportional to either $\delta(t)$ or to a finite quantity.

The current impulse through *R* will cause a voltage impulse $KR\delta(t)$ across *R*. This impulse will appear across *L* and cause a jump in current of KR/L.

(b) For $t > 0^+$, the source is zero, and the circuit reduces to a series *RLC* circuit.

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 \times 0.625 \times 10^{-6}}} = 4 \text{ krad/s}; \ \alpha = \frac{R}{2L} = \frac{1000}{2 \times 0.1} = 5 \text{ krad/s}.$$
 Since $\alpha > \omega_0$, the

response is overdamped, $s_1 = -5 + \sqrt{5^2 - 4^2} = -2$ krad/s and $s_2 = -5 - \sqrt{5^2 - 4^2} = -8$ krad/s. It follows that $i_L = Ae^{-2t} + Be^{-8t}A$, where *t* is in ms.

(c) At $t = 0^+$, A + B = 1; $q = -\frac{A}{2000}e^{-2000t} - \frac{B}{8000}e^{-8000t}$ C, where the constant of integration

is zero since $q \to 0$ as $t \to \infty$; at $t = 0^+$, $v_C = \frac{q}{C} - \frac{A \times 10^3}{1.25} - \frac{B \times 10^3}{5}$ or

 $200 = -\frac{A \times 10^3}{1.25} - \frac{B \times 10^3}{5}$, or 4A + B = -1. This gives A = -2/3 A and B = 5/3 A.

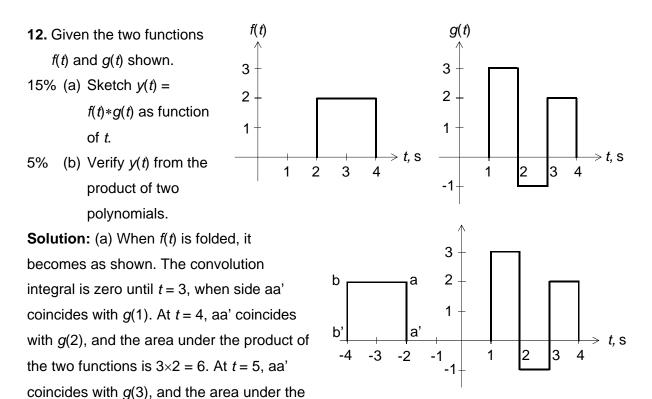
Alternatively, $v_L = L \frac{d_{i_L}}{dt} = 0.1 \left(-2Ae^{-2t} - 8Be^{-8t}\right) \text{H} \times \text{A/ms, or } v_L = 100 \left(-2Ae^{-2t} - 8Be^{-8t}\right) \text{V},$

or $-v_L/100 = 2A + 8B$ at $t = 0^+$. But $v_L + v_C + v_R = 0$, or $-v_L = v_C + v_R$. This gives, 2A + 8B = (200 + 1000)/100. Hence, A + 4B = 6, which gives the same values for A and B. Version 1: (a) K = 0.1; $i_L(0^+) = 10K = 1$ A, $v_C(0^+) = 0$

Version 2: (a) K = 0.2; $i_L(0^+) = 10K = 2$ A, $v_C(0^+) = 0$ **Version 3**: (a) K = 0.3; $i_L(0^+) = 10K = 3$ A, $v_C(0^+) = 0$

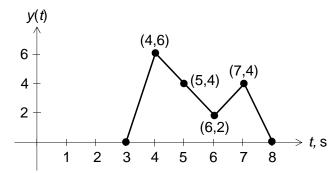
Version 4: (a) K = 0.4; $i_L(0^+) = 10K = 4$ A, $v_C(0^+) = 0$

Version 5: (a) K = 0.5; $i_L(0^+) = 10K = 5$ A, $v_C(0^+) = 0$



product of the two functions is $3 \times 2 - 1 \times 2 = 4$. At t = 6, aa' coincides with g(4), and the area

under the product of the two functions is -1×2 + 2×2 = 2. At t = 7, bb' coincides with g(3), and the area under the product of the two functions is 2×2 = 4. At t = 8, bb' coincides with g(4), and the area under the product of the two functions is back to zero. The convolution function y(t) is as shown.



t = 0

, **İ**_{R1}

6Ω

4Ω

*İ*_{L1}

(b) To derive y(t) In terms of a polynomial, f(t) and g(t) are assumed to both start at t = 0. f(t) is divided into two successive 1 s intervals, each of amplitude 2 units. Thus, as polynomials in x, f(x) = 2x + 2, and $g(x) = 3x^2 - x + 2$. The product $f(x)g(x) = 6x^3 + 4x^2 + 2x + 4$. The non-zero breakpoints are thus at (1,6), (2,4), (3,2), and (4,4). For the given functions, the total shift in time from the origin is 3 s. Because the system is linear and time-invariant, as assumed in the derivation of the convolution integral, the 3 s is added to the time coordinates of the breakpoints from the product of polynomials to give the non-zero breakpoints of y(t) in the figure.

13. The switch is moved at t = 0 after having been in the first position for a long time, with i_{L1} initially zero. Determine, as a function of *t*, for $t \ge 0^+$:

10% (a) *i*_{*R*1}

10% (b) *i*_{L1}

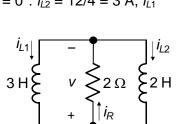
Solution: After switching, the circuit becomes as shown, where at $t = 0^+$: $i_{L2} = 12/4 = 3$ A, $i_{L1} = 0$, $i_R = 3$ A, $v = 3 \times 2 = 6$ V. As $t \to \infty$, v = 0. The time constant is (2||3)/2 = 1.2/2 = 0.6 s. Hence $v = 6e^{-t/0.6}$ V.

(a) It follows that
$$i_{R1} = -\frac{V}{6} = -e^{-t/0.6} A$$

(b) i_{L1} can be determined from conservation of flux linkage in the

loop formed by the two inductors. At $t = 0^+$, going clockwise around the loop, the total flux linkage is $3 \times 2 + 0 = 6$ Wb-T. As $t \to \infty$, the currents in the two inductors are equal in magnitude. Going clockwise around the loop, $i_{L2} \times 5 = 6$ Wb-T, so that $i_{L1} = -i_{L2} = -1.2$ A. It follows that $i_{L1} = -1.2 + (0 + 1.2)e^{-t/0.6} = -1.2(1 - e^{-t/0.6})$ A.

Alternatively,
$$i_{L1} = -\frac{1}{L} \int_0^t v dt + i_{L1}(0) = -\frac{1}{3} \int_0^t 6e^{-t/0.6} dt = -2 \left[-e^{-t/0.6}\right]_0^t = -1.2 \left(1 - e^{-t/0.6}\right) A.$$



 $\geq_{3\Omega}$

⊱2н