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EECE 290 Analog Signal Processing – Quiz 1 
March 12, 2011 

 

1. Specify the type of response IO/VSRC in the circuit 

shown. 

Solution: The transfer function is 
LjR ω+

=
1

SCR

O

V
I , 

which is first-order lowpass. 

 

 

 

2. Specify the order of the frequency-selective 

circuit shown. 

Solution: The impedance of one RC branch is five 

times the other. The parallel impedance is therefore 

5/6 of the lower impedance branch, that is, 5 Ω in 

series with a capacitance 1/5 μF. This capacitance 

can then be combined with the 1 μF capacitance to 

give a first-order circuit. 

 

3. Specify the type of response VO in the circuit shown 

over the frequency range 1 rad/s to 1 Mrad/s. 

Solution: Over the specified frequency range, the 

impedances of L and C are finite, current flows in the 

circuit, and the response R=
SCR

O

I
V  is independent of 

frequency. 

 

4. The magnitude of a transfer function is 
44

28

K+ω

ω , where ω is in rad/s. Determine the 

frequency at which the response is 3 dB less than the maximum value. 

Solution: The magnitude of the transfer function is 
4)/(1

8

ωK+
. This is a second order, 

highpass, Butterworth filter of high-frequency gain of 8. The response is 3 dB less than the 

maximum value at ω = K rad/s 

Version 1: K = 1, ω3dB = 1 rad/s 

–
+VSRC

6 Ω1/6 μF

30 Ω1/30 μF

1 μF

–

+VSRC

1 μF

1 kΩ

IO

2 kΩ

2 H

`

ISRC

1 μF

1 kΩ

–

+

VO

2 H
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Version 2: K = 2, ω3dB = 2 rad/s 

Version 3: K = 3, ω3dB = 3 rad/s 

Version 4: K = 4, ω3dB = 4 rad/s 

Version 5: K = 5, ω3dB = 5 rad/s 

 

5. Determine the slope of the low-frequency asymptote of the transfer function of the 

preceding problem. 

Solution: At low frequencies, the magnitude of the transfer function is 2
2

8 ω
K

. The slope is 

+40 dB/decade. 

 

6. Determine the equivalent capacitance between nodes a 

and b, assuming all capacitances are C μF. 

Solution: the circuit reduces to that 

shown. The equivalent capacitance 

between a and b is 2C + 2C/3 = 

8C/3  

Version 1: C = 1 μF, Cab = 8/3 = 

2.67 μF 

Version 2: C = 2 μF, Cab = 16/3 = 5.33 μF 

Version 3: C = 3 μF, Cab = 24/3 = 8 μF 

Version 4: C = 4 μF, Cab = 32/3 = 10.67 μF 

Version 5: C = 5 μF, Cab = 40/3 = 13.33 μF 

 

7. A constant current I A has been flowing through the 

inductor for a long time. Determine the magnitude and 

polarity of the impulse Kδ(t) that will reduce I to zero. 

Solution: The initial flux linkage is 2I Wb-turns. The 

impulse has to be of this strength and of the polarity of the source. 

Version 1: I = 0.5 A, K = 2I = 1 Wb-turn 

Version 2: I = 1 A, K = 2I = 2 Wb-turns 

Version 3: I = 1.5 A, K = 2I = 3 Wb-turns 

Version 4: I = 2 A, K = 2I = 4 Wb-turns 

Version 5: I = 2.5 A, K = 2I = 5 Wb-turns 

 

 

a ba b
2C

2C
C

_
+

2 HKδ(t) V I
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v(t)

–

+

0.5 μF
i(t)

1.5 μF 2 μF

8. Evaluate the integral ∫
∞

∞−

− dttetK t )cos()( 2δ . 

Solution: The integrand is zero everywhere except between 0- and 0+. Both te 2−  and cos(t) 

are equal to 1 and are continuous at t = 0. The integral reduces to KdttK =∫
+

−

0

0
)(δ . 

Version 1: K = 2, integral = 2 

Version 2: K = 3, integral = 3 

Version 3: K = 4, integral = 4 

Version 4: K = 5, integral = 5 

Version 5: K = 6, integral = 6 

 

9. For t < 0, i(t) = 0 and v(t) = 4 V. At t = 0, a current 

pulse of amplitude I μA and 1 s duration is 

applied. Determine v(t) for t > 1 s. 

Solution: For t < 0, the charges on the capacitors are 

0.5×4 = 2 μC, 1.5×4 = 6 μC, and 2×4 = 8 μC. The value of the equivalent parallel 

capacitor is 0.5 + 1.5 + 2 = 4 μC, its charge is 2 + 6 + 8 = 16 μC, and the voltage across 

it is 16/4 = 4 V. The current pulse will add I×1 μC, so the total charge across the 

equivalent capacitor will be (16 + I) μC, and the final voltage will be (16 + I)/4 = (4 + I/4) 

V. 

Version 1: I = 1 μA, v(∞) = 4 + 1/4 = 4.25 V 

Version 2: I = 2 μA, v(∞) = 4 + 2/4 = 4.5 V 

Version 3: I = 3 μA, v(∞) = 4 + 3/4 = 4.75 V 

Version 4: I = 4 μA, v(∞) = 4 + 4/4 = 5 V 

Version 5: I = 5 μA, v(∞) = 4 + 5/4 = 5.25 V 

 

10. In the circuit shown, all inductances are L H, where L need not be 

specified, i1(t) = I A, i2(t) = -3 A, and i3(t) = 3 – I A, for t < 0. If the 

switch is opened at t = 0, determine i1(t) for t > 0. 

Solution. Method 1: After the switch is opened the only closed path 

remaining is that of i1(t) and i3(t). Hence, flux linkage in this closed path 

must be conserved after the switch is opened. Going in the counterclockwise direction, the 

total flux linkage before the switch is opened, is L×I – L(3 – I) = 2LI – 3L Wb-turns. After the 

switch is opened, the total flux linkage in the counterclockwise direction in the same closed 

path is L×i1(t) + L×i1(t) = 2Li1(t), where i1(t) flows upwards in the rightmost branch. Equating 

these, i1(t) = I – 1.5 A. 
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Method 2: The currents i1(t) and i3(t) can only 

be changed by a voltage impulse. Let a 

voltage impulse Kδ(t) arise of the polarity 

shown, this polarity being quite arbitrary. The 

impulse will add a flux linkage Δλ as shown, 

where the initial flux linkages are shown in red and the final flux linkages in blue, the 

direction of flux linkage being the same as that of current. The final currents in the two 

branches must add to zero. Thus, 0)3(
=

+−
+

+
L
IL

L
LI λΔλΔ . This gives L5.1−=λΔ  Wb-

turns. The final value of i1(t) is 5.15.1
−=

− I
L

LLI  A, as before. 

Method 3: The switch can be replaced by a voltage 

source that applies an impulse Kδ(t) at t = 0. For t < 0, the 

source acts as a short circuit, and the impulse at t = 0 

reduces i2(t) to zero. The flux linkage applied to the 

middle branch is Li = 3L Wb-turns in the direction shown, 

so as to reduce the current to zero. The total flux linkage 

is Li + (L/2)i, where L/2 is the total inductance of the two branches in parallel and i is the total 

current in the two branches. The flux linkage in each of the two parallel branches is Li/2 Wb-

Turns directed upward, the same as in the parallel combination. Since, Li = 3L, Li/2 = 1.5 L 

directed upward, as determined in Method 2. 

Version 1: I = 0.5 A, i1(∞) = 0.5 – 1.5 = -1 A 

Version 2: I = 1 A, i1(∞) = 1 – 1.5 = -0.5 A 

Version 3: I = 1.5 A, i1(∞) = 1.5 – 1.5 = 0 

Version 4: I = 2 A, i1(∞) = 2 – 1.5 = 0.5 A 

Version 5: I = 2.5 A, i1(∞) = 2.5 – 1.5 = 1 A 

 

11. In the circuit shown, R = 10 kΩ, L = 1 μH, 

and C = 1 μF. 

12% (a) Derive the transfer function 

SRC

O

V
V

=)(sH  in terms of R, L , C, 

and s = jω. 

3% (b) Specify the type of response 

represented by H(s). 

5% (c) Determine the frequency at which the phase shift is 180°. 

i1(t) i3(t)

–

+

Kδ(t)
LI L(3 – I)

LI + Δλ L(3 – I) + Δλ

–

+
sL

– +VO
VSRC

sL

1/sC

1/sC

R

R

3 A
Li/2

–
+

Kδ(t)

Li LL
i i/2i/2

Li/2
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Solution: (a) The transfer function for the response across L and C is: 

2
0

2

2
0

2

1 //1
/1)(

ω
ω
++

+
=

++
+

=
LsRs

s
sCsLR

sCsLsH . The transfer function for the response across R is: 

2
0

22 /
/

/1
)(

ω++
=

++
=

LsRs
LsR

sCsLR
RsH . The transfer function H(s) = H1(s) – H2(s) = 

2
0

2

2
0

2

/
/

ω
ω

++
+−

LsRs
LsRs , where 

LC
1

0 =ω . 

(b) The response is allpass. 

(c) The phase shift is 180° at ω = ω0, when H(s) = -1. 
C

6

0
10

=ω , where C is the value in μF. 

Alternatively, if the phase shift is to be determined directly from the transfer function, 

;/tan2/tan/tan)( 22
0

1
22

0

1
22

0

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−=∠ −−−

ωω
ω

ωω
ω

ωω
ωω LRLRLRjH  hence, 

o90/tan 22
0

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

ωω
ω LR ; ∞→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

− 22
0

/
ωω

ω LR ; 0ωω = . 

Version 1: C = 1 μF, 
C

6

0
10

=ω  = 1 Mrad/s 

Version 2: C = 1/4 μF, 
C

6

0
10

=ω  = 2 Mrad/s 

Version 3: C = 1/9 μF, 
C

6

0
10

=ω  = 3 Mrad/s 

Version 4: C = 1/16 μF, 
C

6

0
10

=ω  = 4 Mrad/s 

Version 5: C = 1/25 μF, 
C

6

0
10

=ω  = 5 Mrad/s 

 

12. Given the parallel circuit shown. 

10% (a) Select a branch current to give a 

highpass response with respect to 

ISRC and determine the transfer 

function in terms of G, L, C, and s = jω. 

10% (b) It is desired to have the highpass response of the Butterworth form, with ω0 = 100 

krad/s and C = 100 nF. Determine the required values of L and R = 1/G. (Note that 

the normalized second-order Butterworth polynomial is 122 ++ ss , and that the 

magnitude scaling factor km applies to scaling impedances). 

GLISRC

IGILIC

C
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Solution: (a) IC is zero at low frequencies and equals ISRC at infinite frequencies. It produces 

a highpass response. The transfer function is =
++

==
sLsCG

sCsH
/1

)(
SRC

C

I
I  

2
00

2

2

2

2

)/(/1/ ωω ++
=

++ Qss
s

LCCsGs
s . 

(b) For the required filter, 
LC
1

0 =ω , 
C

L 2
0

1
ω

= . 
2
1

=Q  for a highpass Butterworth 

response, scaled or not scaled. For the required filter 
C
G

Q
=0ω , so G = 20Cω  and R 

=
2

1

0Cω
. If scaling is to be used, kf = ω0, 1110 7 ×=−

fmkk
, 

0

7 110
ωmk

=− , 
0

710
1
ω−=mk , 

2
0

710
11
ω−=×=

f

m

k
kL , 

210
1

0
7ω−

==
G
kR m , where for the normalized Butterworth filter, 

2=G , and km is uses as a scaling factor for R. 

Version 1: ω0 = 100 krad/s, 1
1010

11
7102

0

≡
×

== −C
L

ω
 mH, ==

2
1

0C
R

ω
 

250
2

100
21010

1
75

==
× −

 Ω 

Version 2: ω0 = 50 krad/s, 4
101025

11
782

0

≡
××

==
−C

L
ω

 mH, ==
2

1

0C
R

ω
 

2100
2

200
210105

1
74

==
×× −

 Ω 

Version 3: ω0 = 40 krad/s, ≡
××

==
−782

0 101016
11

C
L

ω
6.25 mH, ==

2
1

0C
R

ω
 

2125
2

250
210104

1
74

==
×× −

 Ω 

Version 4: ω0 = 25 krad/s, ≡
××

==
−782

0 101025.6
11

C
L

ω
16 mH, ==

2
1

0C
R

ω
 

2200
2

400
210105.2

1
74

==
×× −

 Ω 

Version 5: ω0 = 20 krad/s, ≡
××

==
−782

0 10104
11

C
L

ω
25 mH, ==

2
1

0C
R

ω
 

2250
2

500
210102

1
74

==
×× −

 Ω 

 

13. The three capacitors are initially charged 

as shown in the figure. The switch is 

closed at t = 0. Determine: 

8% (a) The value, voltage and charge on 

the capacitor that is equivalent to 

the three capacitors. 

6% (b) The additional charge on this capacitor after the switch is closed. 

2 μF

VSRC

4 μF

–

+

–

+

–

+

–

+

3 μF

15 μC

6 μC 12 μC

t = 0

–

+

V1

V2
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6% (c) The final values of V1 and V2. Check that V1 + V2 = VSRC. 

Solution: (a) The two parallel capacitors can be combined in a 6 μF 

capacitor having a voltage of 3 V. The 3 μF capacitor has a voltage of 5 V. 

The equivalent capacitor Ceq will have a capacitance of 2
63
63
=

+
×  μF and 

a voltage of 8 V. The charge on this capacitor is therefore 16 μC. 

(b) When connected to VSRC, the charge on Ceq μC will be 2VSRC and the additional charge is 

(2VSRC – 16) μC. 

(c) This charge will be added to each of the 3 μF capacitor and the 6 μF in series with it. The 

3 μF capacitor will have a charge of (2VSRC – 16 +15) = (2VSRC – 1) μC, so V1 = (2VSRC – 1)/3 

V. The 6 μF capacitor will have a charge of (2VSRC – 16 +18) = (2VSRC + 2) μC, and V2 = 

(VSRC + 1)/3 V. As a check, V1 + V2 = VSRC. 

Version 1: VSRC = 10 V, Δq = (2VSRC – 16) = 4 μC; V1 = (2VSRC – 1)/3 V = 6.33 V, V2 = (VSRC 

+ 1)/3 V = 3.67 V 

Version 2: VSRC = 12 V, Δq = (2VSRC – 16) = 8 μC; V1 = (2VSRC – 1)/3 V = 7.67 V, V2 = (VSRC 

+ 1)/3 V = 4.33 V 

Version 3: VSRC = 14 V, Δq = (2VSRC – 16) = 12 μC; V1 = (2VSRC – 1)/3 V = 9 V, V2 = (VSRC + 

1)/3 V = 5 V 

Version 4: VSRC = 16 V, Δq = (2VSRC – 16) = 16 μC; V1 = (2VSRC – 1)/3 V = 10.33 V, V2 = 

(VSRC + 1)/3 V = 5.67 V 

Version 5: VSRC = 18 V, Δq = (2VSRC – 16) = 20 μC; V1 = (2VSRC – 1)/3 V = 11.67 V, V2 = 

(VSRC + 1)/3 V = 6.33 V 

–

+

8 V
2 μF

16 μC


