Quiz 3, May 7, 2011

1. Determine which of the following statements is or are true of the two-port circuit shown. (If a false statement is marked true, the question is considered incorrect).
A. The circuit is a symmetric two-port circuit.
B. The circuit is symmetric but not reciprocal.

C. The circuit is not a valid two-port circuit.
D. The circuit is valid at some frequencies and invalid at other frequencies.
E. The circuit can be described in terms of a and b parameters.

Answer. The only true statement is C.
2. Specify the two-port parameter equations that are directly represented by the circuit shown.

Solution: The circuit directly represents the g-parameter
 equations.
3. Determine the Laplace transform of the time integral of $f(t)$, $\int_{0^{-}}^{t} f(t) d t$, assuming $A=1$. The Laplace transform should apply for $t \geq 2 \mathrm{~s}$.

Solution. Method 1: $\int_{0^{-}}^{2} f(t) d t$ is the area of the triangle, which $A / 2$.
 The Laplace transform is therefore $A / 2 s$.

Method 2: $F(s)=\int_{0^{-}}^{1} A(1-t) e^{-s t} d t=A\left[\left(-\frac{1}{s} e^{-s t}\right)_{0^{-}}^{1}-\left(-\frac{t}{s} e^{-s t}\right)_{0^{-}}^{1}-\frac{1}{s}\left(-\frac{1}{s} e^{-s t}\right)_{0^{-}}^{1}\right]=$
$A\left[-\frac{e^{-s}}{s}+\frac{1}{s}+\frac{e^{-s}}{s}+\frac{e^{-s}}{s^{2}}-\frac{1}{s^{2}}\right]=A\left[\frac{1}{s}-\frac{1}{s^{2}}+\frac{e^{-s}}{s^{2}}\right] \cdot \mathscr{L}\left\{f^{-(-1)}(t)\right\}=A\left[\frac{1}{s^{2}}-\frac{1}{s^{3}}+\frac{e^{-s}}{s^{3}}\right] ; f^{-1)}(t)=$
$=A\left[t-\frac{t^{2}}{2}+\frac{(t-1)^{2}}{2} u(t-1)\right]$. For $t \geq 2 \mathrm{~s}, f^{(-1)}(t)=A / 2$, and the Laplace transform is $A / 2 \mathrm{~s}$.
Version 1: $A=1, A / 2 s=0.5 / s$
Version 2: $A=2, A / 2 s=1 / s$

Version 3: $A=3, A / 2 s=1.5 / \mathrm{s}$
Version 4: $A=4, A / 2 s=2 / s$
Version 5: $A=5, A / 2 s=2.5 / s$
4. Given that the Laplace transform of $A\left(e^{-t} / \sqrt{t}\right) \mu(t)$ is $\frac{A \sqrt{\pi}}{\sqrt{s+1}}$, determine the Laplace transform of $\left(A e^{-t} \sqrt{t}\right) \mu(t)$, assuming $A=1$.
Solution. The function whose Laplace transform is required is t times the given function.
Hence, its Laplace transform is $-\frac{d F(s)}{d s}$, where $F(s)=\frac{A \sqrt{\pi}}{\sqrt{s+1}}$. Thus,

$$
-\frac{d F(s)}{d s}=\frac{A \sqrt{\pi}}{2(s+1)^{3 / 2}}
$$

Version 1: $A=1, \frac{A \sqrt{\pi}}{2(s+1)^{3 / 2}}=\frac{0.5 \sqrt{\pi}}{(s+1)^{3 / 2}}$
Version 2: $A=2, \frac{A \sqrt{\pi}}{2(s+1)^{3 / 2}}=\frac{\sqrt{\pi}}{(s+1)^{3 / 2}}$
Version 3: $A=3, \frac{A \sqrt{\pi}}{2(s+1)^{3 / 2}}=\frac{1.5 \sqrt{\pi}}{(s+1)^{3 / 2}}$
Version 4: $A=4, \frac{A \sqrt{\pi}}{2(s+1)^{3 / 2}}=\frac{2 \sqrt{\pi}}{(s+1)^{3 / 2}}$
Version 5: $A=5, \frac{A \sqrt{\pi}}{2(s+1)^{3 / 2}}=\frac{2.5 \sqrt{\pi}}{(s+1)^{3 / 2}}$
5. Determine which of the following statements is or are true. (If a false statement is marked true, the question is considered incorrect).
A. The response of the same circuit can be bounded for a certain input and unbounded for another input.
B. The poles of a first-order circuit must always occur in complex conjugate pairs.
C. A second-order circuit cannot have a double pole.
D. A pole of a voltage source at $s=-2$ corresponds to dc voltage of -2 V .
E. A circuit is unstable if the poles of the transfer function are in the right half of the s plane including the imaginary axis.
Answer. The only true statement is A.
6. Determine the value of the convolution integral $y(t)$ at $t=0.5 \mathrm{~s}$, where $y(t)=f(t) * g(t)$, with $f(t)=\operatorname{sint}, g(t)=2 \delta(t)+\delta^{(2)}(t)$, and $\delta^{(2)}(t)$ being the second derivative of $\delta(t)$.

Solution. $\mathfrak{L}\{\sin t\}=\frac{1}{s^{2}+1}$, and $\mathfrak{L}\left\{2 \delta(t)+\delta^{(2)}\right\}=2+s^{2} ; Y(s)=\frac{s^{2}+2}{s^{2}+1}=1+\frac{1}{s^{2}+1}$;
$y(t)=\delta(t)+\sin t$. At $t=T \mathrm{~s}, y(T)=\sin T$.
Version 1: $T=0.5, \sin (0.5)=0.48$
Version 2: $T=1, \sin (1)=0.84$
Version 3: $T=1.5, \sin (1.5)=1.00$
Version 4: $T=2, \sin (2)=0.91$
Version 5: $T=2.5, \sin (2.5)=0.60$
7. Derive an expression for the Laplace transform of $f(t-b) u(t-a)$, where a and b are positive constants.
Solution. $\mathfrak{L}\{f(t-b) u(t-a)\}=\int_{0^{-}}^{\infty} f(t-b) u(t-a) e^{-s t} d t=\int_{a}^{\infty} f(t-b) e^{-s t} d t$. Substituting, $t^{\prime}=t-$ a,
$\mathfrak{L}\{f(t-b) u(t-a)\}=\int_{0^{-}}^{\infty} f\left(t^{\prime}+a-b\right) e^{-s\left(t^{\prime}+a\right)} d t^{\prime}=e^{-a s} \mathfrak{L}\{f(t+a-b)\}$.
8. Determine $f(t)$ if $F(s)=\frac{K s}{s^{2}+4 s+20}$, assuming $K=1$.

Solution. $F(s)=\frac{K s}{s^{2}+4 s+20}=\frac{K s}{(s+2)^{2}+16}=\frac{K(s+2)-2 K}{(s+2)^{2}+16}$
$f(t)=K e^{-2 t} \cos 4 t-\frac{K}{2} e^{-2 t} \sin 4 t$
Version 1: $K=1, f(t)=e^{-2 t} \cos 4 t-0.5 e^{-2 t} \sin 4 t$
Version 2: $K=2, f(t)=2 e^{-2 t} \cos 4 t-e^{-2 t} \sin 4 t$
Version 3: $K=3, f(t)=3 e^{-2 t} \cos 4 t-1.5 e^{-2 t} \sin 4 t$
Version 4: $K=4, f(t)=4 e^{-2 t} \cos 4 t-2 e^{-2 t} \sin 4 t$
Version 5: $K=5, f(t)=5 e^{-2 t} \cos 4 t-2.5 e^{-2 t} \sin 4 t$
9. If $F(s)=K \frac{s^{2}+s+1}{s^{3}+s^{2}+s+1}$, determine $f(t)$ for large values of t, assuming $K=1$.

Solution. $K \frac{s^{2}+s+1}{s^{3}+s^{2}+s+1}=K \frac{s^{2}+s+1}{\left(s^{2}+1\right)(s+1)}=\frac{K}{2}\left[\frac{1}{s+1}+\frac{s+1}{s^{2}+1}\right] . f(t)=\frac{K}{2}\left[e^{-t}+\cos t+\sin t\right]$.
For large values of $t, f(t) \rightarrow \frac{K}{2}[\cos t+\sin t]=\frac{K}{\sqrt{2}} \cos (t-\pi / 4)$. The final-value theorem does
not apply because of the poles at $s= \pm j$.
Version 1: $K=1, \frac{K}{\sqrt{2}} \cos (t-\pi / 4)=\frac{1}{\sqrt{2}} \cos (t-\pi / 4)$
Version 2: $K=2, \frac{K}{\sqrt{2}} \cos (t-\pi / 4)=\sqrt{2} \cos (t-\pi / 4)$
Version 3: $K=3, \frac{K}{\sqrt{2}} \cos (t-\pi / 4)=\frac{3}{\sqrt{2}} \cos (t-\pi / 4)$
Version 4: $K=4, \frac{K}{\sqrt{2}} \cos (t-\pi / 4)=2 \sqrt{2} \cos (t-\pi / 4)$
Version 5: $K=5, \frac{K}{\sqrt{2}} \cos (t-\pi / 4)=\frac{5}{\sqrt{2}} \cos (t-\pi / 4)$
10. The figure shows two identical, consecutive pulses, each of duration a, the second pulse being inverted with respect to the first. If $F(s)$ is the Laplace transform of the two pulses shown, determine, in terms of $F(s)$, the Laplace transform of $f(\mathrm{t})$ shifted to the left by a. Assume $a=1$.
$f(t)$

Solution. Let $G(s)$ be the Laplace transform of a single pulse that extends from $t=0$ to $t=a$.
Then, $F(s)=G(s)-G(s) e^{-a s}$, or $G(s)=\frac{F(s)}{1-e^{-a s}}$. When shifted to the left, the Laplace transform of $f(t+a)$ is $-G(s)=\frac{-F(s)}{1-e^{-a s}}$

Version 1: $a=1,-G(s)=\frac{-F(s)}{1-e^{-s}}$
Version 2: $a=2,-G(s)=\frac{-F(s)}{1-e^{-2 s}}$
Version 3: $a=3,-G(s)=\frac{-F(s)}{1-e^{-3 s}}$
Version 4: $a=4,-G(s)=\frac{-F(s)}{1-e^{-4 s}}$
Version 5: $a=5,-G(s)=\frac{-F(s)}{1-e^{-5 s}}$
11. Determine the h parameters for the circuit shown, assuming $\omega=1 \mathrm{rad} / \mathrm{s}$ (5\% for each parameter).

Solution. With the output short circuited, the impedance of the paralleled capacitors and resistor is
$\frac{1 / j 2}{1+1 / j 2}=\frac{1}{1+j 2} ; h_{11}=\frac{\mathbf{V}_{1}}{I_{1}}=$

$1+\frac{1}{1+j 2}=\frac{2(1+j)}{1+j 2}=\frac{2(3-j)}{5} \Omega ; \mathbf{V}_{x}=\frac{1}{1+j 2} \mathbf{I}_{1}$, and $2 \mathbf{V}_{x}=\mathbf{I}_{2}+j \mathbf{V}_{\mathrm{x}}$, or $\mathbf{V}_{x}=\frac{1}{2-j} \mathbf{I}_{2}$. Equating
$\mathbf{v}_{\mathrm{x}}, \frac{1}{1+j 2} \mathbf{I}_{1}=\frac{1}{2-j} \mathbf{I}_{2} ; h_{21}=\frac{\mathbf{I}_{\mathbf{2}}}{\mathbf{I}_{\mathbf{1}}}=\frac{2-j}{1+j 2}=-j$.
With the input open circuited, $\mathbf{V}_{\pi}=\mathbf{V}_{\mathbf{1}}=$ $\frac{1 /(1+j)}{1 / j+1 /(1+j)} \mathbf{V}_{2}$; hence,
$h_{12}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{j}{1+j 2}=\frac{2+j}{5}$.
$\mathbf{I}_{\mathbf{2}}=\frac{1}{1 / j+1 /(1+j)} \mathbf{V}_{\mathbf{2}}+2 \mathbf{V}_{\mathbf{x}}=\frac{j(1+j)}{1+j 2} \mathbf{V}_{\mathbf{2}}$

$+\frac{j 2}{1+j 2} \mathbf{V}_{2}$, so $h_{22}=\frac{\mathbf{I}_{2}}{\mathbf{V}_{2}}=\frac{-1+j 3}{1+j 2}=(j+1) \mathrm{S}$
12. Determine the Laplace transform of:

10\%(a) $f(t)$.
10\%(b) $\quad d f(t) / d t$.
Solution. (a) Method 1: $f(t)=2 t u(t)-2(t-1) u(t-1)-$
$u(t-1)-(t-1) u(t-1)+(t-2) u(t-2) ;$ hence,
$F(s)=\frac{2}{s^{2}}-\left(\frac{1}{s}+\frac{3}{s^{2}}\right) e^{-s}+\frac{1}{s^{2}} e^{-2 s}$.

Method 2: $F(s)=\int_{0^{-}}^{1} 2 t e^{-s t} d t+\int_{1}^{2}(2-t) e^{-s t} d t=2\left[-\frac{t}{s} e^{-s t}\right]_{0^{-}}^{1}+\frac{2}{s}\left[-\frac{1}{s} e^{-s t}\right]_{0^{-}}^{1}+2\left[-\frac{1}{s} e^{-s t}\right]_{1}^{2}-$
$\left[-\frac{t}{s} e^{-s t}\right]_{1}^{2}-\frac{1}{s}\left[-\frac{1}{s} e^{-s t}\right]_{1}^{2}=$
$-\frac{2}{s} e^{-s}-\frac{2}{s^{2}} e^{-s}+\frac{2}{s^{2}}-\frac{2}{s} e^{-2 s}+\frac{2}{s} e^{-s}+\frac{2}{s} e^{-2 s}-\frac{1}{s} e^{-s}+\frac{1}{s^{2}} e^{-2 s}-$
$\frac{1}{s^{2}} e^{-s}=\frac{2}{s^{2}}-\left(\frac{1}{s}+\frac{3}{s^{2}}\right) e^{-s}+\frac{1}{s^{2}} e^{-2 s}$.
(b) $\mathscr{L}\{d f / d t)\}=s F(s)-f\left(0^{-}\right)=1+\frac{2}{s}-\left(1+\frac{3}{s}\right) e^{-s}+\frac{1}{s} e^{-2 s}$.

As a check, $f^{(1)}(t)=\delta(t)+2 u(t)-3 u(t-1)-\delta(t-1)+u(t-2)$.
It follows that $\mathscr{L}\{d f / d t)\}=1+\frac{2}{s}-\frac{3}{s} e^{-s}-e^{-s}+\frac{1}{s} e^{-2 s}$.
Note that in order to obtain the Laplace transform of $f(t)$ from $f^{(1)}(t)$, then because $f(t)$ has an initial value of -1 at $t=0^{-}$, the correct expression is: $\left.F(s)=\frac{1}{s} \mathscr{L}\{d f / d t)\right\}+\frac{f\left(0^{-}\right)}{s}$. Thus, $\frac{1}{s}+\frac{2}{s^{2}}-\left(\frac{1}{s}+\frac{3}{s^{2}}\right) e^{-s}+\frac{1}{s^{2}} e^{-2 s}-\frac{1}{s}$.
13. The double switch is opened at $t=0$ after having been closed for a long time.
8\% (a) Draw the circuit in the s domain for $t \geq 0^{+}$.

6\% (b) Derive $V_{O}(s)$.
6% (c) Derive $v_{o}(t)$ for $t \geq 0^{+}$.

Solution. (a) At $t=0$, there will be an initial current of 2 A in each winding and an initial voltage of 4 V across the capacitor as shown. The circuit in the s domain is shown for $t \geq 0^{+}$. The secondary inductor is $L_{2}-M=2 \mathrm{H}$ and the source is $(2 \mathrm{H}) \times(-2 \mathrm{~A})=-4$. The
 current in the 4 H mutual inductor is $2+2=4 \mathrm{~A}$ directed downwards, and the source is $(4 \mathrm{H}) \times(4 \mathrm{~A})=16$.
(b) From KVL: $(6 s+2+1 / 4 s) I_{2}$ $+16+4+4 / s=0$, which gives:
$I_{2}=-\frac{4(5 s+1)}{6 s^{2}+2 s+0.25} ;$

$V_{O}=\frac{I_{2}}{4 s}+\frac{4}{s}=\frac{1}{s}\left[\frac{I_{2}}{4}+4\right]=\frac{1}{s}\left[4-\frac{5 s+1}{6 s^{2}+2 s+0.25}\right]=\frac{1}{s}\left[\frac{24 s^{2}+3 s}{6 s^{2}+2 s+0.25}\right]=\frac{3(8 s+1)}{6 s^{2}+2 s+0.25}$.
(c) $V_{0}=\frac{4 s+0.5}{s^{2}+s / 3+1 / 24}=\frac{4(s+1 / 6)}{(s+1 / 6)^{2}+(1 / 6 \sqrt{2})^{2}}-\sqrt{2} \frac{1 / 6 \sqrt{2}}{(s+1 / 6)^{2}+(1 / 6 \sqrt{2})^{2}}$. It follows that $v_{O}(t)=4 e^{-t / 6} \cos (6 t / \sqrt{2})-\sqrt{2} e^{-t / 6} \sin (6 t / \sqrt{2}) V$.

