EECE 290

Quiz 3, May 7, 2011

- Determine which of the following statements is or are true of the two-port circuit shown. (If a false statement is marked true, the question is considered incorrect).
 - A. The circuit is a symmetric two-port circuit.
 - B. The circuit is symmetric but not reciprocal.
 - C. The circuit is not a valid two-port circuit.
 - D. The circuit is valid at some frequencies and invalid at other frequencies.
 - E. The circuit can be described in terms of *a* and *b* parameters.

Answer. The only true statement is C.

 Specify the two-port parameter equations that are directly represented by the circuit shown.

Solution: The circuit directly represents the *g*-parameter equations.

3. Determine the Laplace transform of the time integral of f(t),

 $\int_{0^{-}}^{t} f(t)dt$, assuming A = 1. The Laplace transform should apply for $t \ge 2$ s.

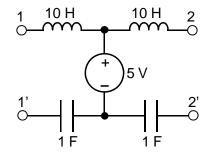
Solution. Method 1: $\int_{0^{-}}^{2} f(t) dt$ is the area of the triangle, which A/2. The Laplace transform is therefore A/2s

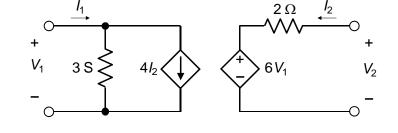
Method 2:
$$F(s) = \int_{-1}^{1} A(1-t)e^{-st} dt = A \left[\left(-\frac{1}{2}e^{-st} \right)^{1} - \left(-\frac{t}{2}e^{-st} \right)^{1} - \frac{1}{2} \left(-\frac{1}{2}e^{-st} \right)^{1} \right]$$

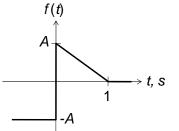
$$A[-\frac{e^{-s}}{s} + \frac{1}{s} + \frac{e^{-s}}{s} + \frac{e^{-s}}{s^2} - \frac{1}{s^2}] = A\left[\frac{1}{s} - \frac{1}{s^2} + \frac{e^{-s}}{s^2}\right] \cdot \mathscr{L}\{f^{-1}(t)\} = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{e^{-s}}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^2} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^3} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^3} - \frac{1}{s^3} + \frac{1}{s^3} + \frac{1}{s^3}\right]; f^{-1}(t) = A\left[\frac{1}{s^3} - \frac{1}{s^3}\right]; f^{-1}(t) = A\left$$

$$= A \left[t - \frac{t}{2} + \frac{(t-1)}{2} u(t-1) \right].$$
 For $t \ge 2$ s, $t^{-1}(t) = A/2$, and the Laplace transform is $A/2$

Version 1: *A* = 1, *A*/2*s* = 0.5/*s* Version 2: *A* = 2, *A*/2*s* = 1/*s*







Version 3: *A* = 3, *A*/2*s* = 1.5/*s* Version 4: *A* = 4, *A*/2*s* = 2/*s* Version 5: *A* = 5, *A*/2*s* = 2.5/*s*

4. Given that the Laplace transform of $A(e^{-t} / \sqrt{t})u(t)$ is $\frac{A\sqrt{\pi}}{\sqrt{s+1}}$, determine the Laplace

transform of $(Ae^{-t}\sqrt{t})u(t)$, assuming A = 1.

Solution. The function whose Laplace transform is required is *t* times the given function.

Hence, its Laplace transform is $-\frac{dF(s)}{ds}$, where $F(s) = \frac{A\sqrt{\pi}}{\sqrt{s+1}}$. Thus,

$$-\frac{dF(s)}{ds}=\frac{A\sqrt{\pi}}{2(s+1)^{3/2}}.$$

Version 1: A = 1, $\frac{A\sqrt{\pi}}{2(s+1)^{3/2}} = \frac{0.5\sqrt{\pi}}{(s+1)^{3/2}}$

Version 2: A = 2, $\frac{A\sqrt{\pi}}{2(s+1)^{3/2}} = \frac{\sqrt{\pi}}{(s+1)^{3/2}}$

Version 3: A = 3, $\frac{A\sqrt{\pi}}{2(s+1)^{3/2}} = \frac{1.5\sqrt{\pi}}{(s+1)^{3/2}}$

Version 4: A = 4, $\frac{A\sqrt{\pi}}{2(s+1)^{3/2}} = \frac{2\sqrt{\pi}}{(s+1)^{3/2}}$

Version 5: A = 5, $\frac{A\sqrt{\pi}}{2(s+1)^{3/2}} = \frac{2.5\sqrt{\pi}}{(s+1)^{3/2}}$

- **5.** Determine which of the following statements is or are true. (If a false statement is marked true, the question is considered incorrect).
 - A. The response of the same circuit can be bounded for a certain input and unbounded for another input.
 - B. The poles of a first-order circuit must always occur in complex conjugate pairs.
 - C. A second-order circuit cannot have a double pole.
 - D. A pole of a voltage source at s = -2 corresponds to dc voltage of -2 V.
 - E. A circuit is unstable if the poles of the transfer function are in the right half of the *s* plane including the imaginary axis.

Answer. The only true statement is A.

6. Determine the value of the convolution integral y(t) at t = 0.5 s, where y(t) = f(t)*g(t), with $f(t) = \text{sint}, g(t) = 2\delta(t) + \delta^{(2)}(t)$, and $\delta^{(2)}(t)$ being the second derivative of $\delta(t)$.

Solution.
$$\mathcal{L}\left\{\sin t\right\} = \frac{1}{s^2 + 1}$$
, and $\mathcal{L}\left\{2\delta(t) + \delta^{(2)}\right\} = 2 + s^2$; $Y(s) = \frac{s^2 + 2}{s^2 + 1} = 1 + \frac{1}{s^2 + 1}$;
 $y(t) = \delta(t) + \sin t$. At $t = T$ s, $y(T) = \sin T$.
Version 1: $T = 0.5$, $\sin(0.5) = 0.48$
Version 2: $T = 1$, $\sin(1) = 0.84$
Version 3: $T = 1.5$, $\sin(1.5) = 1.00$
Version 4: $T = 2$, $\sin(2) = 0.91$
Version 5: $T = 2.5$. $\sin(2.5) = 0.60$

7. Derive an expression for the Laplace transform of f(t - b)u(t - a), where *a* and *b* are positive constants.

Solution. $\mathscr{L}\left\{f(t-b)u(t-a)\right\} = \int_{0^{-}}^{\infty} f(t-b)u(t-a)e^{-st}dt = \int_{a}^{\infty} f(t-b)e^{-st}dt$. Substituting, t' = t - a,

$$\mathscr{L}\left\{f(t-b)u(t-a)\right\} = \int_{0^{-}}^{\infty} f(t'+a-b)e^{-s(t'+a)}dt' = e^{-as} \mathscr{L}\left\{f(t+a-b)\right\}.$$

8. Determine f(t) if $F(s) = \frac{Ks}{s^2 + 4s + 20}$, assuming K = 1.

Solution. $F(s) = \frac{Ks}{s^2 + 4s + 20} = \frac{Ks}{(s+2)^2 + 16} = \frac{K(s+2) - 2K}{(s+2)^2 + 16}$

$$f(t) = K e^{-2t} \cos 4t - \frac{K}{2} e^{-2t} \sin 4t$$

Version 1: K = 1, $f(t) = e^{-2t} \cos 4t - 0.5e^{-2t} \sin 4t$

Version 2: K = 2, $f(t) = 2e^{-2t} \cos 4t - e^{-2t} \sin 4t$

Version 3: K = 3, $f(t) = 3e^{-2t} \cos 4t - 1.5e^{-2t} \sin 4t$

Version 4: K = 4, $f(t) = 4e^{-2t} \cos 4t - 2e^{-2t} \sin 4t$

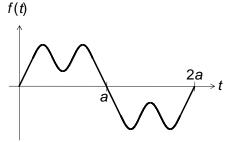
Version 5: K = 5, $f(t) = 5e^{-2t} \cos 4t - 2.5e^{-2t} \sin 4t$

9. If $F(s) = K \frac{s^2 + s + 1}{s^3 + s^2 + s + 1}$, determine f(t) for large values of t, assuming K = 1. Solution. $K \frac{s^2 + s + 1}{s^3 + s^2 + s + 1} = K \frac{s^2 + s + 1}{(s^2 + 1)(s + 1)} = \frac{K}{2} \left[\frac{1}{s + 1} + \frac{s + 1}{s^2 + 1} \right]$. $f(t) = \frac{K}{2} \left[e^{-t} + \cos t + \sin t \right]$.

For large values of t, $f(t) \rightarrow \frac{K}{2} [\cos t + \sin t] = \frac{K}{\sqrt{2}} \cos(t - \pi/4)$. The final-value theorem does

not apply because of the poles at $s = \pm j$.

- Version 1: K = 1, $\frac{K}{\sqrt{2}}\cos(t \pi/4) = \frac{1}{\sqrt{2}}\cos(t \pi/4)$ Version 2: K = 2, $\frac{K}{\sqrt{2}}\cos(t - \pi/4) = \sqrt{2}\cos(t - \pi/4)$ Version 3: K = 3, $\frac{K}{\sqrt{2}}\cos(t - \pi/4) = \frac{3}{\sqrt{2}}\cos(t - \pi/4)$ Version 4: K = 4, $\frac{K}{\sqrt{2}}\cos(t - \pi/4) = 2\sqrt{2}\cos(t - \pi/4)$ Version 5: K = 5, $\frac{K}{\sqrt{2}}\cos(t - \pi/4) = \frac{5}{\sqrt{2}}\cos(t - \pi/4)$
- 10. The figure shows two identical, consecutive pulses, each of duration *a*, the second pulse being inverted with respect to the first. If *F*(*s*) is the Laplace transform of the <u>two pulses shown</u>, determine, in terms of *F*(*s*), the Laplace transform of *f*(t) shifted to the <u>left</u> by *a*. Assume *a* = 1.



Solution. Let G(s) be the Laplace transform of a single pulse that extends from t = 0 to t = a.

Then,
$$F(s) = G(s) - G(s)e^{-as}$$
, or $G(s) = \frac{F(s)}{1 - e^{-as}}$. When shifted to the left, the Laplace

transform of f(t + a) is $-G(s) = \frac{-F(s)}{1 - e^{-as}}$

Version 1: a = 1, $-G(s) = \frac{-F(s)}{1 - e^{-s}}$

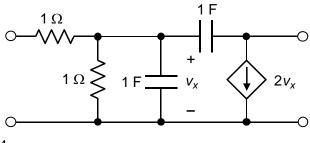
Version 2: a = 2, $-G(s) = \frac{-F(s)}{1 - e^{-2s}}$

Version 3: a = 3, $-G(s) = \frac{-F(s)}{1 - e^{-3s}}$

Version 4:
$$a = 4$$
, $-G(s) = \frac{-F(s)}{1 - e^{-4s}}$

Version 5:
$$a = 5$$
, $-G(s) = \frac{-F(s)}{1 - e^{-5s}}$

11. Determine the *h* parameters for the circuit shown, assuming $\omega = 1$ rad/s (5% for each parameter).



Solution. With the output short circuited,

the impedance of the paralleled capacitors and resistor is

 $\begin{array}{c} \mathbf{I}_{1} & 1 \\ \bigcirc \longrightarrow \\ + \\ \mathbf{V}_{1} & 1 \\ \bigcirc \end{array} \begin{array}{c} \mathbf{I}_{1} & 1 \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ + \\ \mathbf{V}_{1} \\ - \\ \bigcirc \end{array} \begin{array}{c} 1 \\ \downarrow \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array} \end{array} \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array} \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}$

$$\frac{1/j2}{1+1/j2} = \frac{1}{1+j2}; h_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} = \frac{-1}{\mathbf{V}_1}$$

$$1 + \frac{1}{1+j2} = \frac{2(1+j)}{1+j2} = \frac{2(3-j)}{5} \Omega; \mathbf{V}_x = \frac{1}{1+j2} \mathbf{I}_1, \text{ and } 2\mathbf{V}_x = \mathbf{I}_2 + j\mathbf{V}_x, \text{ or } \mathbf{V}_x = \frac{1}{2-j} \mathbf{I}_2. \text{ Equating}$$

$$\mathbf{V}_{\mathbf{x}}, \ \frac{1}{1+j2} \mathbf{I}_{1} = \frac{1}{2-j} \mathbf{I}_{2}; \ h_{21} = \frac{\mathbf{I}_{2}}{\mathbf{I}_{1}} = \frac{2-j}{1+j2} = -j.$$

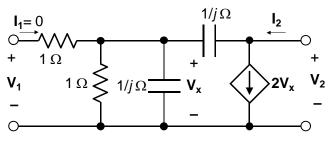
With the input open circuited, $V_{\pi} = V_1 =$

$$\frac{1/(1+j)}{1/j+1/(1+j)} \mathbf{V_2}; \text{ hence,}$$

$$h_{12} = \frac{\mathbf{V_1}}{\mathbf{V_2}} = \frac{j}{1+j2} = \frac{2+j}{5}.$$

$$\mathbf{I_2} = \frac{1}{1/j+1/(1+j)} \mathbf{V_2} + 2\mathbf{V_x} = \frac{j(1+j)}{1+j2} \mathbf{V_2}$$

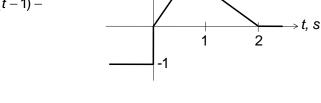
$$+ \frac{j2}{1+j2} \mathbf{V_2}, \text{ so } h_{22} = \frac{\mathbf{I_2}}{\mathbf{V_2}} = \frac{-1+j3}{1+j2} = (j+1) \text{ S}$$



12. Determine the Laplace transform of:

10%(a) f(t). 10%(b) df(t)/dt. **Solution.** (a) Method 1: f(t) = 2tu(t) - 2(t-1)u(t-1) - u(t-1) - (t-1)u(t-1) + (t-2)u(t-2); hence,

$$F(s) = \frac{2}{s^2} - \left(\frac{1}{s} + \frac{3}{s^2}\right)e^{-s} + \frac{1}{s^2}e^{-2s}.$$



f(t)

2

1

Method 2:
$$F(s) = \int_{0^{-}}^{1} 2t e^{-st} dt + \int_{1}^{2} (2-t) e^{-st} dt = 2 \left[-\frac{t}{s} e^{-st} \right]_{0^{-}}^{1} + \frac{2}{s} \left[-\frac{1}{s} e^{-st} \right]_{0^{-}}^{1} + 2 \left[-\frac{1}{s} e^{-st} \right]_{1}^{2} - \frac{1}{s} e^{-st} = \frac{1}{s} e^{-st} \left[-\frac{1}{s} e^{-st} \right]_{1}^{1} + \frac{1}{s} e^{-st} \left[$$

$$\begin{bmatrix} -\frac{t}{s}e^{-st} \end{bmatrix}_{1}^{2} -\frac{1}{s} \begin{bmatrix} -\frac{1}{s}e^{-st} \end{bmatrix}_{1}^{2} = f^{(1)}(t)$$

$$-\frac{2}{s}e^{-s} -\frac{2}{s^{2}}e^{-s} +\frac{2}{s^{2}} -\frac{2}{s}e^{-2s} +\frac{2}{s}e^{-s} +\frac{2}{s}e^{-2s} -\frac{1}{s}e^{-s} +\frac{1}{s^{2}}e^{-2s} -\frac{1}{s}e^{-2s} -\frac{1}{s}e^{$$

As a check, $f^{(1)}(t) = \delta(t) + 2u(t) - 3u(t-1) - \delta(t-1) + u(t-2)$. It follows that $\mathscr{L}\{df/dt\} = 1 + \frac{2}{s} - \frac{3}{s}e^{-s} - e^{-s} + \frac{1}{s}e^{-2s}$.

Note that in order to obtain the Laplace transform of f(t) from $f^{(1)}(t)$, then because f(t)has an initial value of -1 at $t = 0^{-}$, the correct expression is: $F(s) = \frac{1}{s} \mathcal{L}\{df/dt\}\} + \frac{f(0^{-})}{s}$. Thus,

1Ω

3Ω

6 V

 $\uparrow t = 0$

5 H

W 1Ω

 $\mathcal{N}\mathcal{N}$

2 A

3Ω

4 H

≻6 H

2Ω

2Ω

2 A

4 F

v_o

4 V

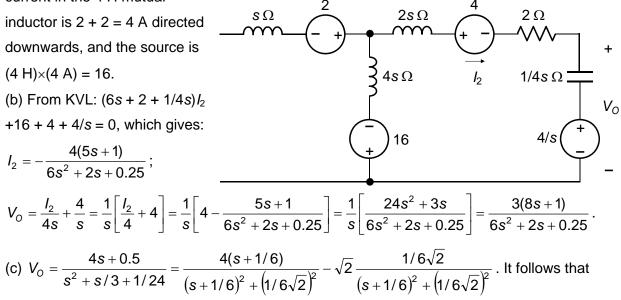
$$\frac{1}{s} + \frac{2}{s^2} - \left(\frac{1}{s} + \frac{3}{s^2}\right)e^{-s} + \frac{1}{s^2}e^{-2s} - \frac{1}{s}.$$

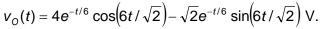
- **13.** The double switch is opened at t = 0after having been closed for a long time.
- 8% (a) Draw the circuit in the s domain for $t \ge 0^+$.
- 6% (b) Derive $V_0(s)$.
- 6% (c) Derive $v_0(t)$ for $t \ge 0^+$.

Solution. (a) At $t = 0^{-}$, there will be an initial current of 2 A in each winding and an initial voltage of 4 V across the capacitor as shown. The circuit in the *s* domain is shown for $t \ge 0^+$. The secondary inductor is $L_2 - M = 2$ H and the source is $(2 \text{ H}) \times (-2 \text{ A}) = -4$. The

current in the 4 H mutual

inductor is 2 + 2 = 4 A directed downwards, and the source is $(4 \text{ H}) \times (4 \text{ A}) = 16.$





6