Homework 1

P10.1.5 Determine the response
$V_{O}(j \omega) / V_{S R C}(j \omega)$, both in magnitude and phase, the passband gain, and the corner frequency

Figure P10.1.5
in Figure P10.1.5.
Solution P10.1.5 The impedance of
the 8 nF capacitor is $\frac{0.125}{j \omega}$
$\mathrm{k} \Omega$, where ω is in Mrad/s.
Hence,
$H(j \omega)=\frac{V_{0}(j \omega)}{\left.V_{S R} d j \omega\right)}=\frac{0.125 / j \omega}{10+0.25 / j \omega}$

$=\frac{0.5}{1+j 40 \omega}$. It follows that $|H(j \omega)|=\frac{0.5}{\sqrt{1+(40 \omega)^{2}}}, \angle H(j \omega)=-\tan ^{-1}(40 \omega)$. The response is lowpass; the passband gain, when $\omega \rightarrow 0$ is 0.5 ; the corner frequency is when $40 \omega_{c l}=1$, or $\omega_{c l}=25 \mathrm{krad} / \mathrm{s}$.

P10.1.7 Determine the response
$V_{O}(j \omega) / I_{S R C}(j \omega)$, both in magnitude and phase, the passband gain, and the corner

frequency in Figure P10.1.7.
Solution P10.1.7 The impedance of the capacitor is $\frac{100}{j 3 \omega} \mathrm{k} \Omega$, where ω is in $\mathrm{krad} / \mathrm{s}$. The dependent source of voltage $10^{3} I_{O}(j \omega)$, where $I_{O}(j \omega)$, is the current through the source, is equivalent to a resistance of $\frac{10^{3} I_{O}(j \omega)}{I_{O}(j \omega)} \equiv 1 \mathrm{k} \Omega$. Hence, $H(j \omega)=\frac{V_{0}(j \omega)}{I_{S R C}(j \omega)}=\frac{100 \times 10^{3}}{j 3 \omega} \times \frac{2}{3+100 / j 3 \omega}=\frac{2 \times 10^{3}}{1+j 0.09 \omega}$ V/A. It follows that $|H(j \omega)|=\frac{2 \times 10^{3}}{\sqrt{1+(0.09 \omega)^{2}}}$ V/A, $\angle H(j \omega)=-\tan ^{-1}(0.09 \omega)$. The response is lowpass; the passband gain, when $\omega \rightarrow 0$ is 2×10^{3}; the corner frequency is when $0.09 \omega_{c l}=1$, or $\omega_{c l}=100 / 9 \mathrm{krad} / \mathrm{s}$.

P10.1.10 Determine the response
passband gain, and the corner

Figure P10.1.10 frequency in Figure P10.1.10.
Solution P10.1.10 Let the current in the capacitor be $I_{O}(j \omega)$. Then $V_{O}(j \omega)=I_{O}(j \omega) / j \omega C$.
The current in the $2 \mathrm{k} \Omega$ resistor is $\frac{0.5 V_{\circ}(j \omega)}{2000}$, and the total current is $I_{O}(j \omega)+$ $\left.\frac{0.5 V_{O}(j \omega)}{2000}=V_{O}(j \omega)[j \omega C+1 / 4000)\right]$. It is seen that a $4 \mathrm{k} \Omega$ resistor appears in parallel with the capacitor. TEC as seen by the capacitor will have $V_{T h}(j \omega)=\frac{4}{5} V_{S R C}(j \omega)=0.8 V_{S R C}(j \omega) ; R_{T h}=\frac{4}{5}=0.8 \mathrm{k} \Omega$.

TEC could have been derived directly. Thus, on open circuit, the current is $\frac{V_{0}(j \omega)-0.5 V_{O}(j \omega)}{2} \mathrm{~mA}$, so that $V_{S R C}(j \omega)=V_{O}(j \omega)+\frac{V_{0}(j \omega)}{4}$, so that $V_{T h}(j \omega)=\frac{4}{5} V_{S R C}(j \omega)=0.8 V_{S R C}(j \omega)$. On short circuit, $I_{\text {sc }}(j \omega)=\frac{V_{S R C}(j \omega)}{1} \mathrm{~mA}$. Hence, $R_{T h}=\frac{V_{T h}(j \omega)}{l_{s c}}=0.8 \mathrm{k} \Omega$.

The impedance of the capacitor is $\frac{20}{j \omega} \mathrm{k} \Omega$, where ω is in $\mathrm{krad} / \mathrm{s}$. Hence,
$\frac{V_{O}(j \omega)}{0.8 V_{S R C}(j \omega)}=\frac{20 / j \omega}{0.8+20 / j \omega}$, or $H(j \omega)=\frac{V_{O}(j \omega)}{V_{S R C}(j \omega)}=\frac{0.8}{1+0.04 j \omega}$. It follows that
$|H(j \omega)|=\frac{0.8}{\sqrt{1+(0.04 \omega)^{2}}} . \angle H(j \omega)=-\tan ^{-1}(0.04 \omega)$. The response is lowpass; the passband gain, when $\omega \rightarrow 0$ is 0.8 . The corner frequency is when $0.04 \omega_{c l}=1$, or $\omega_{c l}=25 \mathrm{krad} / \mathrm{s}$.

P10.1.12 Determine the response
$V_{O}(j \omega) / V_{S R C}(j \omega)$, both
in magnitude and phase, the passband gain, and the corner frequency in Figure P10.1.12.

Figure P10.1.12

Solution P10.1.12 The impedance of the capacitor is
$\frac{1}{j \omega 100 \times 10^{-9}} \equiv \frac{10}{j \omega} \mathrm{k} \Omega$, where ω is in krad/s.

When the source and 2

$\mathrm{k} \Omega$ resistor are reflected to the secondary side, they become a source of $2 V_{S R C}(j \omega)$ in series with $8 \mathrm{k} \Omega$. Hence, $\frac{V_{0}(j \omega)}{2 V_{S R C}(j \omega)}=\frac{10}{18+10 / j \omega}$, or $H(j \omega)=\frac{V_{0}(j \omega)}{V_{S R C}(j \omega)}=\frac{20}{18+10 / j \omega}=\frac{2 j \omega}{1+j 1.8 \omega}$. It follows that $|H(j \omega)|=\frac{2 \omega}{\sqrt{1+(1.8 \omega)^{2}}}, \angle H(j \omega)=90^{\circ}-\tan ^{-1}(1.8 \omega)$. The response is highpass; the passband gain, when $\omega \rightarrow \infty$ is $10 / 9 \equiv 0.915 \mathrm{~dB}$; the corner frequency is $\omega_{\mathrm{cl}}=\frac{5}{9} \mathrm{krad} / \mathrm{s} \equiv 88.4 \mathrm{~Hz}$

P10.2.2 Determine R, L, and C in Figure P10.2.2 such that:
(a) the maximum
response of $V_{o}(s)$ is 1
V ; (b) the bandwidth is

Figure P10.2.2
$4 \mathrm{krad} / \mathrm{s}$; and (c) the center frequency is $100 \mathrm{krad} / \mathrm{s}$.
Solution P10.2.2 Maximum response, which occurs at ω_{0}, is $R I$; hence $R=10 \mathrm{k} \Omega . \mathrm{Q}=$ $\omega_{0} / \mathrm{BW}=100 / 4=25$; it follows that $C=\frac{Q}{\omega_{0} R}=\frac{25}{10^{5} \times 10^{4}} \equiv 25 \mathrm{nF}$, and $L=$

$$
\frac{R}{\omega_{0} Q}=\frac{10^{4}}{25 \times 10^{5}} \equiv 4 \mathrm{mH}
$$

P10.2.3 Given the transfer function $H(s)=\frac{4 s^{2}+1000 s+100}{5 s^{2}+500 s+125}$. Determine the maximum response in dB .
Solution P10.2.3. $H(s)=\frac{4}{5}\left[\frac{s^{2}+250 s+25}{s^{2}+100 s+25}\right]=0.8\left[\frac{s^{2}+25}{s^{2}+100 s+25}+\frac{250 s}{s^{2}+100 s+25}\right]$.
The first term is a bandstop response of magnitude 0.8 at low and high frequencies and zero at $\omega=5 \mathrm{rad} / \mathrm{s}$. The second term is a bandpass response of zero at low and high frequencies and magnitude of 2 at $\omega=5$ $\mathrm{rad} / \mathrm{s}$. The sum will have a maximum magnitude of 2 , or $20 \log _{10} 2=6 \mathrm{~dB}$, at $\omega=5 \mathrm{rad} / \mathrm{s}$.

