American University of Beirut

Faculty of Engineering and Architecture Department of Electrical and Computer Engineering

EECE 290 - Analog System Processing - Spring 2009 EXAM 1 - Friday March 27, 2009
Lama Hamandi

Name: \qquad ID Number: \qquad

Read the following instructions carefully:

- The duration of the exam is $\mathbf{9 0}$ minutes.
- The exam consists of 10 pages and 15 questions. You can use the question sheets for scratch.
- All questions have the same weight. Total achievable points: $\mathbf{1 0 0}$.
- No questions will be answered during the exam.
- Programmable calculators are not allowed.
- Provide your answers on the computer card only using a pencil.
- Return the computer card attached to the question sheet.
- Mark with a pencil your last name.
- Mark with a pencil your ID number.
- You don't need to fill the field "Test ID".
- When using an eraser, make sure you erased well.
- When you finish the exam bring all of your belongings to the front of the room and hand in the exam. Then leave the room immediately.
- Enjoy and Good Luck!
$\frac{\boldsymbol{f}(t)(\boldsymbol{t}>0-)}{\delta(t)} \frac{\boldsymbol{F}(\boldsymbol{s})}{1}$
$u(t) \quad \frac{1}{s}$ $t \quad \frac{1}{s^{2}}$
$e^{-a t} \quad \frac{1}{s+a}$
$\sin \omega t$
$\cos \omega t$

$$
\frac{s}{s^{2}+\omega^{2}}
$$

$f(t)(t>0-)$

$$
\frac{d f(t)}{d t}
$$

$$
\int_{0}^{t} f(x) d x
$$

$$
f(t-a) u(t-a), a>0
$$

$$
e^{-a t} f(t)
$$

$f(a t), a>0$
$t f(t)$
$F(s)$
$s F(s)-f\left(0^{-}\right)$
$\frac{F(s)}{s}$
$e^{-a s} F(s)$
$F(s+a)$
$\frac{1}{a} F\left(\frac{s}{a}\right)$
$-\frac{d F(s)}{d s}$

1. Determine the current i_{0} in mA .
A. 4
B. 2.5
C. 6.7
D. 5
E. None of the above

2. In the previous problem, what is the range of the $V_{\text {SRC }}$ to keep the op amp working in the linear region.
A. $-4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SRC}} \leq 3 \mathrm{~V}$
B. $-2 \mathrm{~V} \leq \mathrm{V}_{\text {SRC }} \leq 3 \mathrm{~V}$
C. $-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SRC}} \leq 2 \mathrm{~V}$
D. $-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SRC}} \leq 4 \mathrm{~V}$
E. None of the above
3. Determine the voltage v_{1} in Volts given that $\mathrm{v}_{\mathrm{a}}=0.1 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{b}}=0.2 \mathrm{~V}$.
A. 1.36 V
B. 3.4 V
C. 2.2 V
D. 4.1 V
E. None of the above

4. Determine the current i_{a} in $m A$ in the previous problem. Hint: start by finding v_{2}
A. 3.8 mA
B. -3.8 mA
C. 2.96 mA
D. -2.96 mA
E. None of the above
5.

The switch closes at time $\mathrm{t}=0$, with initial currents in the inductors $\mathrm{I}_{1}\left(0^{-}\right)=5 \mathrm{~A}, \mathrm{I}_{2}\left(0^{-}\right)=3 \mathrm{~A}, \mathrm{I}_{3}\left(0^{-}\right)=2 \mathrm{~A}$. Given that $\mathrm{L}_{1}=3 \mathrm{mH}, \mathrm{L}_{2}=4 \mathrm{mH}, \mathrm{L}_{3}=4 \mathrm{mH}, \mathrm{R}_{1}=5 \mathrm{~K} \Omega, \mathrm{R}_{2}=20 \mathrm{~K} \Omega$. Find the total energy dissipated in R_{1} and R_{2}.
A. 87.5 mW
B. 43.75 mW
C. 31.25 mW
D. 62.5 mW
E. None of the above
6. What is the energy trapped in the system of problem 5 as $t \rightarrow \infty$.
A. 1 mW
B. 1.5 mW
C. 2 mW
D. 2.5 mW
E. None of the above
7. Find the Laplace transform of df/dt.

A. $\frac{1-2 e^{-2 s}+(s-1) e^{-3 s}}{s}$
B. $\frac{1-2 e^{-s}+(1+s) e^{-3 s}}{s}$
C. $\frac{0.5-1.5 e^{-2 s}+(1+s) e^{-4 s}}{s}$
D. $\frac{0.5-2.5 e^{-3 s}+(s-1) e^{-4 s}}{s}$
E. None of the above
8. Given that the hyperbolic sine is: $\sinh a t=\frac{e^{a t}-e^{-a t}}{2}$. Find $\mathscr{L}\left\{\mathrm{e}^{-3 \mathrm{t}} \sinh 2 t\right\}$.
A. $3 /\left(s^{2}+4 s-5\right)$
B. $s /\left(s^{2}+6 s-5\right)$
C. $2 /\left(s^{2}+6 s+5\right)$
D. $s /\left(s^{2}+4 s+5\right)$
E. None of the above
9. Find the Laplace transform of $f(t)=\left(2 t+3 t^{2}\right)^{2}$
A. $\left(8 s^{2}+72 s+216\right) / s^{5}$
B. $\left(24 s^{2}+6 s+2\right) / s^{5}$
C. $\left(18 s^{2}+72 s+96\right) / s^{5}$
D. $\left(24 s^{2}+12 s+8\right) / s^{5}$
E. None of the above
10. Given that $F(s)=\frac{8 s^{2}+4 s+6}{(2 s+3)(s+4)}$, find $f(t)$, the inverse Laplace of $F(s)$.
A. $4 t+\left(3.4 e^{-1.5 t}-22.4 e^{-4 t}\right) u(t)$
B. $4 \delta(t)+\left(3.6 e^{-1.5 t}-23.6 e^{-4 t}\right) u(t)$
C. $\left(7.2 \mathrm{e}^{-1.5 \mathrm{t}}-23.6 \mathrm{e}^{-4 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
D. $4 \delta(\mathrm{t})+\left(3.4 \mathrm{e}^{-1.5 \mathrm{t}}-22.4 \mathrm{e}^{-4 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
E. None of the above
11. The switch has been open for a long time. It closes at $t=0$. Find $v_{2}\left(0^{+}\right)$.

A. 22.5 V
B. 15 V
C. 40 V
D. 33.75 V
E. None of the above
12. The switches have been open for a long time. They close at $t=0$. Find $V_{1}(s)$.

A. $(40 \mathrm{~s}+5) /\left(\mathrm{s}^{2}+3.75 \mathrm{~s}\right)$
B. $(25 \mathrm{~s}+6) /\left(\mathrm{s}^{2}+0.27 \mathrm{~s}\right)$
C. $(40 \mathrm{~s}+6) /\left(\mathrm{s}^{2}+0.27 \mathrm{~s}\right)$
D. $(25 \mathrm{~s}+5) /\left(\mathrm{s}^{2}+3.75 \mathrm{~s}\right)$
E. None of the above
13. The switch closes at $\mathrm{t}=0$. Find $\mathrm{v}(\mathrm{t})$ in volts for $\mathrm{t} \geq 0$, t is in seconds..

A. $2.25+0.75 \mathrm{e}^{-0.067 \mathrm{t}}$
B. $2.75+0.5 \mathrm{e}^{-0.033 \mathrm{t}}$
C. $2.5+1.5 \mathrm{e}^{-0.05 \mathrm{t}}$
D. $3+2 \mathrm{e}^{-0.1 t}$
E. None of the above
14. The switch opens again at $t=10 \mathrm{sec}$. Find $v(t)$ for $t \geq 10 \mathrm{sec}$.
A. $2-0.63 \mathrm{e}^{-0.067(\mathrm{t}-10)}$
B. $4-0.6 \mathrm{e}^{-0.038(\mathrm{t}-10)}$
C. $2.5-0.5 \mathrm{e}^{-0.067(\mathrm{t}-10)}$
D. $3-0.37 \mathrm{e}^{-0.05(\mathrm{t}-10)}$
E. None of the above
15. For the following circuit, $\mathrm{L}=8 \mathrm{H}, \mathrm{C}=2 \mathrm{~F}, \mathrm{R}=10 \Omega$. Choose the right answer:
A. The response is overdamped
B. The response is critically damped.
C. The response is underdamped.
D. This is the natural response of parallel RLC circuit.
E. None of the above.

