CHEMISTRY 212 Final 17 June 1999 2 Hours | Family Name | · | |-------------|---| | First Name: | | | ID Number: | | | Section: | | Section A [50 marks] Question 1. [10 marks] Predict the principal organic product of each of the following reactions: Specify the sterochemistry where appropriate. 2. + CH₃CH₂Li 1. Ether 2. H₃O 3. $$\begin{array}{c} C_6H_5 \\ H \longrightarrow CH_3 \\ C \longmapsto H \\ C_6H_5 \end{array} + C_6H_5S^{-}Na^{+} \longrightarrow \begin{array}{c} \\ \end{array}$$ 4 CH₃O Na[†] $$H \longrightarrow OH$$ 7. $$CH_3CH_2$$ CH_2CH_3 CH_3CH_2 $CO_2CH_2CH_3$ $CO_2CH_2CH_3$ 8. 9. Question 2 [15 marks] Using any organic or inorganic reagent, suggest efficient synthesis of each of the following: 1. $$CH_2OCH_3$$ From 3. PhCOPh From Benzylalcohol and Bromobenzene 4. 1-Bromo-2-fluoro-3,5-dimethylbenzene From m-Xylene Question 3 [3 marks] Offer an explanation for the observation that 4-chloropyridine is more reactive towards nucleophiles than 3-chloropyridine 4-Chloropyridine 3-Chloropyridine Question 4 [12 marks] Propane was reacted with chlorine (2 moles) under conditions that favoured free-radical substitution. Four dichloropropanes were isolated. The nmr of these compounds are given. Deduce the structures of the dichloropropanes. Briefly explain your answers. Structure A δ 2.4, singlet,6H Structure D δ 2.2, quintet, δ 3.7, triplet δ 4H ## Question 5 [10 marks] Suggest plausible mechanisms that would justify the formation of the indicated products: 2. Hint: Similar to the Hoffman degradation of amides ## Section B [50 marks] Answer by putting the correct letter next to the question i.e. A, B No marks will be given if your answer contains two letters If none of the answers is correct i.e. A, B, C, D, then answer by adding E as your answer. 1. Which of the following compounds would have an off-resonance decoupled ¹³C NMR spectrum that shows two quartets, a triplet, and a doublet? a. CH, CH, OCH, CH, CH, c. CH₃OCH₂C(CH₃)₃ d. CH₂CH₂CH₂OH b. CH,CH,OCH(CH₃)₂ 2. How many ¹H NMR signals will 2-chloro-3-methyl-2-butene exhibit? a. one b. two c. three 3. Which compound $(C_6H_{12}O_2)$ shows two singlets at 1.3 and 2.1 ppm with a corresponding relative integration ratio of 3 : 1 in ¹H NMR? a. CH,OOCC(CH₁), c. $(CH_3O)_3C = C(OCH_1)_3$ b. CH, COOC(CH₁), d. CH,COCH,CH,COCH, 4. Which of the following compounds has an odd P+.? A CH,NH, BrCH,CH, В C CH,NHNH, D a. A b. A and C c. all but B d. all of the above 5. Give the best route for the synthesis of this alcohol: \underline{a} . $C_2H_5COOCH_3 + C_6H_5MgBr -$ (b.`C,H,COCH, + C,H,CH,MgBr c. CH,COCH,C,H, + CH,CH,CH,MgBr - d. CH₃CH₂CH(CH₃)MgBr + C₆H₅CHO + $\ensuremath{\text{\fontfamily{1.5}}}$ The product(s) of the reaction of 2-methyl-1,2-pentanediol with HIO, is (are) \bigcirc CH₃(CH₂)₂COCH₃ + HCHO c. CH₃(CH₂)₂CH(CH₃)COOH b. CH₃(CH₃),COOH + HCOOH d. CH,(CH,),COCH, + HCOOH 7. Which of the following compounds would yield a ketone when reacted with Na, Cr, O, H, SO,? **6**: (CH₂),C(OH)H c. (CH₂),C(OH)CH₄ d. (CH,),CCH,OH e. CH OCH CH, ε . Which of the following diols would not react with HIO.? a. 2,3-hexanediol c. cis-1,2-cyclohexanediol € trans-1,2-cyclobexanediol d. 2,4-pentanediol 9. The reaction of propylene oxide with excess concentrated HCl yields a. 1-chloro-2-propanol c. 1,2-dichloropropane b. 2-chloro-1-propanol d. I-chloro-1-propane | | a. (CH ₃ CH ₂ CO) ₂ O CH ₃ CH ₂ COOCH ₃ b. CH ₃ CH ₂ COCl d. CH ₃ CH ₂ COOCH ₃ | | | |--|--|--|--| | | 11. What is the product in this sequence? | | | | | $(CH_3)_2CHCOOCH_3 \xrightarrow{LiAlH_4} \xrightarrow{PBr_3} \xrightarrow{NaCN} \xrightarrow{H_1O/H^4} product$ | | | | | a. (CH ₃) ₂ CHCONH ₂ c. (CH ₃) ₂ CHCH ₂ CH ₂ OH
(b. (CH ₃) ₂ CHCH ₂ COOH d. (CH ₃) ₂ CHCH ₂ COO¬NH ₄ * | | | | | 12. What is the correct descending order in acid strength of the following compounds? | | | | | A $COOH$ CII CII $COOH$ | | | | | a. A > D > C > B
b. B > A > D > C
d. D > B > A > C | | | | | 13. The IUPAC name of the compound below is | | | | | CH ₂ —C—CHCH ₂ CHCl
 | | | | | a. 1-chloro-1,3-dimethyl-4-pentanone c. 5-chloro-3,5-dimethyl-2-hexanone d. 3-chloro-5-methyl-6-heptanone | | | | | 14. What is the four-membered intermediate in the Wittig reaction called? a. betaine b. oxaphosphetane c. ylide d. phosphonium ion | | | | | 45. During the first step of the base-catalyzed (OH⁺) aldol condensation, a. the carbonyl is protonated. b. the HO⁺ ion attacks the carbonyl group. c. the HO⁺ ion abstracts an α-hydrogen to form an enolate. d. the carbonyl gets ionized. | | | | | 16. Which are the most acidic hydrogens in the compound below? | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | 17. Decarboxylation is common in a. β-oxoketones b. β-ketocarboxylic acids c. β-oxoarenes d. β-hydroxyketones | | | | | 18. At room temperature in the liquid phase CH ₃ COCH ₂ COOCH ₃ is at equilibrium with a. H ₂ C=C(OH)CH ₂ COOCH ₃ | | | | | 19. The reaction below produces a(n) | | | | | C ₆ H ₅ CHO + CN ⁻ H.O.H. a optically active compound c. meso compound | | | | | a. optically active compound b. racemic pair c. meso compound d. a pair of diastereomers | | | | | 20. Which is the weakest base? a. N-methylaniline b. benzylamine c. aniline d. cyclohexylamine | | | | | 21. Which compound will not react with C ₆ H ₅ N=N*Cl ⁻ to yield an azo dye? a. phenol b. benzene c. N,N-dimethylaniline d. 2-naphthol | | | 22. Which method would produce N-methylbenzylamine? a. C₆H₃CH₂Cl + NH₂OH/HCl, followed by H₂/Pt b. C₆H₅CHO + CH₃NH₃, followed by H₃/Ni c. C₆H₃COCH₃ + NH₃/H^{*}, followed by H₂/Ni d. C₆H₆ + (CH₃CO)₂O/H^{*}, followed by NH₂OH/HCl 23 Exhaustive methylation and Ag₂O treatment of methyl (2-methylcyclohexyl) amine yields ____-methylcyclohexene. a. 1 b. 2 c. 3 d. 4 24. Which projection(s) correspond(s) to D-glyceraldehyde? HO — CH₂OH OHC ——— CH₂OH -СНО CH₂OH СНО ОН C b. B c. C d. A and B a. A 25. The fact that sucrose is a nonreducing sugar, proves that the _____ unit of sucrose is linked to the ____ unit via a _____ linkage. c. fructose, glucose, C₁ to C₂ d. fructose, glucose, C₅ to C₆ a. glucose, fructose, C_5 to C_6 b. glucose, fructose, C_1 to C_2