FINAL EXAM.; MATH 211

 $FALL\ 2001,\ FEb.\ 3;\ 8:00\ A.M.-10:00\ A.M.$

Instructors' Names: N. Fleihan

A. Lyzzaik

Instructions:

- Make sure to write your NAME, ID NUMBER, and SECTION NUMBER (or CLASS MEETING TIME) on your Examination book.
- Write your answers on the colored EXAMINATION BOOKLET; reserve an independent page to each independent question $1, 2, \dots, 9$.
- The examination consists of 9 independent questions each of which consists of partial questions.
- The grade on each question is placed next to the question.
- The TOTAL GRADE is 100.
- N, P, and Z denote respectively the sets of natural numbers, positive integers, and integers.
- GOOD LUCK.

4. Let the function $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ be defined by

$$f(x,y) = (2x^3 + 3y^3, 3x^3 - 2y^3)$$

- (a) Show that f is a one-to-one correspondence. (6 points)
- (b) Find the inverse function of f. (2 points)
- 5. For $m, n \in \mathbb{N}$ define $m \sim n$ if $m^2 n^2$ is a multiple of 5.
 - (a) Show that \sim is an equivalence relation. (3 points)
- (b) Describe the equivalence classes. How many equivalence classes are there? Justify your answer. (7 points)
- 6. (a) Let R_1 and R_2 be relations on a set S. Show that $(R_1 \cap R_2)^{\leftarrow} = R_1^{-} \cap (R_2)^{\leftarrow}$. (5 points)
- (b) Let R_1 and R_2 be relations on a set S. Must R_1 and R_2 be transitive if $R_1 \cup R_2$ is transitive? Justify your answer: If yes prove the statement, otherwise give a counter-example. (5 points)
- 7. (a) Let $f: S \to T$ and $g: T \to U$ be invertible functions. Show that $g \circ f$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. (5 points)
- (b) Prove that the sequence $\{1,5,\cdots,5^n,\cdots\}$ has infinitely many terms such that the difference between any two of them is divisible by 11. Name your method of proof. (5 points)

- 8. (a) Show that $n^{1000} = \bigcirc(n!)$. (5 points)
- (b) Consider $\mathbf{N} \times \mathbf{N}$ and define the equivalence relation $(m,n) \sim (p,q)$ if m=p. Determine the partition and the natural function ν of $\mathbf{N} \times \mathbf{N}$ induced by \sim . (5 points)
- 9. Answer by true (T) or false (F) the following TEN questions.

(2pts. each)

- (i) If R is a relation on a set S, then $R \cap R^{\perp}$ is symmetric.
- (ii) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$.
- (iii) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.
- (iv) $\chi_E(n) = \lceil n/2 \rceil \lfloor n/2 \rfloor$, $n \in \mathbb{Z}$, where E is the set of even integers.
- (v) The equation $x +_5 3 = x *_5 2$ has two solutions.
- (vi) There is only one equivalence class for the equivalence relation in **Z** defined by $m \equiv n \pmod{1}$.
- (vii) $\log_{10} n = \Theta(\log_2 n)$.
- (viii) $(3n)! = \dot{\bigcirc}(2n!)$.
- (ix) If $s_{2n} = 2s_n + 3 + 7n$, $n \in \mathbf{P}$, then $s_{2^m} = \bigcirc (2^m)$.
- (x) MATH 211 was FUN.