AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 211 FINAL EXAMINATION FALL 2005-2006 Closed Book, 2 HOURS

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

- 1. (10 points)
 - (a) (3 points) Prove without using truth tables that the implication

$$(\neg q \land (p \to q)) \to \neg p,$$

is a tautology.

(b) (5 points) Let a, b, c be any three consecutive positive integers. Prove that $a^3 + b^3 + c^3$ is divisible by 9

(c) (2 points) Let P(x) and Q(x) be predicates on a universal set $U = \{x_1, x_2\}$. Prove the equivalence :

$$(\forall x (P(x) \land Q(x))) \equiv (\forall x P(x)) \land (\forall x Q(x)).$$

2. (10 points) Let $M = 2^p - 1$, $(p \in \mathbb{N})$.

(a) (3 points) Show that M prime implies that p is prime.

(b) (3 points) Let $N = (2^p - 1)2^{p-1}$, where p is prime. Give the elements of the set S_N that consists of the divisors of N, others than N :

$$S_N = \{x_1, x_2, \dots, x_n\},\$$

with $\{\forall i = 1, 2...n : x_i | N, x_i \neq N\}$. What is the cardinality of S_N .

(c) (2 points) Show that

$$\sum_{i=1}^{n} x_i = N.$$

(d) (2 points) Give N and S_N for p = 2, 5

3. (10 points) Consider the recurrence relation :

(1)
$$a_n - 5a_{n-1} + 6a_{n-2} = 2^n + 3n, a_0 = 0, a_1 = 1.$$

(a) (4 points) Find the general solution of the recurrence equation :

$$a_n - 5a_{n-1} + 6a_{n-2} = 0.$$

(b) (4 points) Find a particular solution to :

$$a_n - 5a_{n-1} + 6a_{n-2} = 2^n + 3n.$$

(Hint : find first particular solutions for each of 2^n and 3n).

(c) (3 points) Find the solution to the recurrence relation (1)

4. (10 points) Given a sequence of n + 1 real numbers $\{a(0), a(1), ..., a(n)\}$ and a real number c, consider the following algorithm :

(a) (4 points) Give f(n) the number of artithmetic operations needed to execute this algorithm.

(b) (2 points) Give α in $f(n) = \Theta(n^{\alpha})$.

(c) (4 points) (independent from (a) and (b)) Assume that $f(n) = \Theta(n^3)$ and $g(n) = \Theta(n)$. Give $\Theta(f(n) + g(n))$ and $\Theta(\frac{f(n)}{g(n)})$.

5. (10 points) Let S be a set with n elements. Answer the following justifying your answer.
(a) (2 points) How many ordered pairs are there in S × S?

(b) (3 points) How many relations are there on S (subsets of $S \times S$)?

(c) (5 points) Let A, B, C be 3 sets. Suppose |A| = |B| = |C| = 100, $|A \cap B| = 70$, $|A \cap C| = 50$, $|B \cap C| = 45$ and $|A \cup B \cup C| = 175$. How many elements are there in $A \cap B \cap C$?

- 6. (10 points) Let $n \in \mathbb{N}_+$.
 - (a) (3 points) Let S_n be the set of all <u>non-empty subsets</u>, $\{a_1, a_2, ..., a_k | 1 \le k \le n\}$ of the set of first n integers $\{1, 2, ..., n\}$. Give a recursive definition of the sets S_n . Indicate the basis and recursive steps. <u>Hint</u>: The recursive step should include 3 cases.

(b) (2 points) Let

$$s_n = \sum_{\{a_1, a_2, \dots, a_k\} \in S_n} \left(\frac{1}{a_1.a_2...a_{k-1}.a_k}\right).$$

Give the expressions and values of s_1 , s_2 and s_3 .

(c) (5 points) Prove by Mathematical induction that $s_n = n$.

Additional space for answers