

American University of Beirut Z. Khachadourian Final Exam-Math. 211

Aug., 2003

NAME:----- ID.-----

I. 1. Evaluate the sum:
$$\binom{n}{0} + 3 \binom{n}{1} + 3^2 \binom{n}{2} + 3^3 \binom{n}{3} + \dots + 3^n \binom{n}{n}$$
.

2. Find the coefficient of $x^3y^2z^6$ in the multinomial expansion: $(x+2y-3z^2)^8$.

II. 1. How many arrangements of the letters of the word MISSISSIPPI exist in which no two I's are next to each other?

Hint: First find the number of arrangements of the letters MSSSSPP. Then distribute the four I's as required?

- 2. M.S., the formula one driver has to complete 30 laps in a particular race, during which he will make exactly four pit stops. A stop should happen only at a complete lap, and there must be at least one lap just before and just after each pit stop. In how many ways can M.S. choose his stops?
- III. True or false? In each case give a reason.

1.
$$10^n = O(5^n)$$
.

$$2. \quad \left(\frac{n\pi}{2}\right)^2 = \Theta(n^2).$$

IV.1. In how many ways can 9 prisoners be placed in three distinct cells A, B and C if cell A must take 2, cell B must take 3, and cell C must take the others?

- 2. It was observed at a conference that:
 - 100 persons can speak English,
 - 90 persons can speak French,
 - 60 persons can speak Russian,
 - 30 persons can speak English and French,
 - 20 persons can speak English and Russian,
 - 10 persons can speak French and Russian,
 - 5 persons can speak all the three languages.

How many persons were there at the conference?

V. Let

 $f: P \times P \to P$ be defined by: f(m,n) = mn; $\forall m, n \in P$.

1. Find
$$f^{\leftarrow}(2), f^{\leftarrow}(2^2), and f^{\leftarrow}(2^3)$$
.

- 2. Find $f^{\leftarrow}(p^r)$, where $r \in P$ and p is prime.
- 3. Prove or disprove: i) f is 1-1.
 - ii) f is onto.

VI.

Let $\Sigma = \{a,b\}$ be an alphabet. Answer the following questions:

- a. What is the number of elements of the set Σ^6 of all six letter words of Σ ?
- b. What is the number of elements of the set Σ^{\oplus} of all words of at most six letters of Σ ?
- c. Define on Σ^6 the relation R by: wRw' iff w and w' have the same first letter but different last letter.
- Is Rreflexive? Is it antireflexive? Is it symmetric? Is it transitive? Give reasons.
- d. Show that the set of all strings of a's and b's is uncountable.
- e. Show that the set of all words having exactly one a is countable.
- VII. 1. Give an explicit formula for s_n if: $s_0 = 5$, $s_1 = 8$ and $s_n = 4s_{n-1} 4s_{n-2}$; $n \ge 2$.
 - 2. Give a recursive relation for the sequence:

$$(3,3^2,3^{3^2-1},3^{(3^{3^2-1})-1},....)$$

VIII. Use mathematical induction to prove that:

1. $15-4n+5^n$ is divisible by 16; $\forall n \in P$.

2.
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$
; $\forall n \in P$.

- IX. 1. Find a 1-1 correspondence between the intervals of real numbers (0,1) and (5,9).
 - 2. Given the set $D=\{1,2,3,...,9\}$.
 - a) How many four digit numbers are possible using four distinct digits of D?
 - b) How many four digit numbers are possible, if repetition is allowed?
 - c) How many four digit numbers are possible if two distinct even and two distinct odd digits of D are used?

<u>GRADE DISTRIBUTION:</u>20 points for question VI. 10 points for each of the other eight questions.