AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 211 FINAL EXAMINATION SPRING 2006

Closed Book, 2 HOURS

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	15	
2	10	
3	15	
4	10	
5	10	
6	10	
TOTAL	70	

- 1. (10 points)
 - (a) (5 points) Let m be a positive integer, show that for $a, b \in \mathbb{Z}$, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

(b) (5 points) Use mathematical induction to prove that $\frac{1}{2n} \leq \frac{1.3.5...(2n-1)}{2.4...(2n)}$, whenever n is a positive integer.

(c) (5 points) Show that if $2^n - 1$ is prime then n is prime.

2.	(10 points) Let S be the set of all bit strings of length at least equal to 3.	Consider
	the relation R on S , such that :	

$$R = \{(x, y) | x \text{ and } y \text{ agree in their first 3 bits.} \}$$

(a) (3 points) Show that
$$R$$
 is an equivalence relation on S .

(b) (7 points) Is S finitely or infinitely partitioned by R? Specify the classes of equivalences of R.

- 3. (15 points) Consider the recurrence relation :
 - $(1) a_n = a_{n-1} + a_{n-2}$
 - (a) (2 points) Find the general solution of (1).

(b) (3 points) For which initial conditions a_0 and a_1 , do we get the **Fibonacci sequence** $\{f_n\}$. Give the general expression of f_n .

(c) (3 points) Find a such that $f_n = \Theta(a^n)$.

(d) (5 points) Solve the recurrence relation :

$$a_n = a_{n-1} + a_{n-2} + 2^n, \ a_0 = 0, \ a_1 = 1.$$

(e) (2 points) Find b such that $a_n = \Theta(b^n)$.

- 4. (10 points) Given a sequence of n+1, $(n \geq 1)$ real numbers $\{a(0), a(1), ..., a(n)\}$ and a real number c, consider the following algorithm: p := a(n) for i from n-1 downto 0 $\{$,i.e. i=n-1,...,1,0 $\}$ p=c*p+a(i) end
 - (a) (3 points) Check which function p(c) is computed for n = 3, 2, 1?

(b) (2 points) Give f(n) the number of artithmetic operations needed to execute this algorithm.

(c) (2 points) Give α in $f(n) = \Theta(n^{\alpha})$.

(d) (3 points) (independent from (a) and (b)) Assume that $f(n) = \Theta(n^3 \ln(n))$ and $g(n) = \Theta(n^{0.5})$. Give $\Theta(f(n) + g(n))$ and $\Theta(\frac{f(n)}{g(n)})$.

5	(10)	points'	Let	S	he	a	set	with	n	elements.
<i>o</i> .	(IU	pomus,	LDCU	\mathcal{L}	nc	a	SCU	WILLII	IU	erements.

(a) (3 points) How many subsets of S have 3 elements?

(b) (7 points) How many subsets of S have more than 2 elements?

6	(10^{-})	noints)	Α	street	named	QuizStreet	has	addresses	numbered	from	100	to	199
υ.	(IU	pomus	Λ	Surecu	nameu	Matzporeer	mas	addresses	numbered	110111	TOO	ω	199.

(a) (5 points) Find the number of **disjoint distinct subsets** of the form $\{x, x + 1\}$.

(b) (5 points) Show that among 51 distinct addresses in QuizStreet, 2 must be consecutive.