Faculty of Arts and Sciences
Mathematics Department
MATH 211
FINAL EXAMINATION
SPRING 2007
Closed Book, 2 HOURS

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	5	
2	10	
3	10	
4	10	
5	15	
6	10	
7	10	
TOTAL	70	

1. (5 points) Express this statement using quantifiers on specific universe of discourses :
"There is exactly one student in this class who has taken exactly one mathematics course at this school".
2. (10 points) Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of n objects forming the universe of discourse for the propositional functions (predicates) $P(x)$ and $Q(x)$. Prove by (soft) mathematical induction that :

$$
\exists x \in X_{n},(P(x) \rightarrow Q(x)) \text { and }\left(\forall x \in X_{n}, P(x)\right) \rightarrow\left(\exists x \in X_{n}, Q(x)\right)
$$

are logically equivalent.
Specify the base and inductive steps. (Hint : Use the equivalence $p \rightarrow q \equiv \neg p \vee q$.)
3. (10 points) Prove that for all $x \in \mathbb{R}$:
$\lfloor\lfloor x / 2)\rfloor / 2\rfloor=\lfloor x / 4\rfloor$
Hint : use $x / 4=\lfloor x / 4\rfloor+\alpha$.
4. (10 points) In what follows, a, b, c and m are integers with $m>1$.
(a) (5 points) Prove or disprove the following statement: If $a c \equiv b c(\operatorname{modm})$, then $a \equiv b(\bmod m)$.
(b) (5 points) Show that if $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod (m / d))$, where $d=\operatorname{gcd}(m, c)$.
5. (15 points) Consider the recurrence relation :
(1)

$$
a_{n}=a_{n-1}^{3} a_{n-2}^{2}, \text { with } a_{0}=2 \text { and } a_{1}=2
$$

(a) (3 points) Use logarithms to change (1) into a linear recurrence relation for ($b_{n}=$ $\left.\log _{2}\left(a_{n}\right)\right)$. Find such recurrence relation for $\left\{b_{n}\right\}$:
(2)
(b) (8 points) Solve (2) and find the expressions of b_{n} and a_{n}.
(c) (4 points) Find functions $f(n)$ and $g(n)$ such that $b_{n}=\Theta(g(n))$ and $a_{n}=\Theta(f(n))$.
6. (10 points)
(a) (5 points) How many strings of length 10 over the alphabet $\{a, b, c\}$ have exactly $3 a$'s or exactly $4 b$'s?
(b) (5 points) There are 12 signs in the zodiac. How many people are needed to guarantee that at least six of these people have the same sign?
7. (10 points) Given a sequence of $n+1,(n \geq 1)$ real numbers $\{a(0), a(1), \ldots, a(n)\}$ and a real number c, consider the following algorithm :

```
p :=a(0) t :=c
for i from 1 to n {,i.e. i=1,2,\ldots,n-1,n}
    p=p+a(i)*t
    t=c*t
end
```

(a) (3 points) Check which function $\mathrm{p}(\mathrm{c})$ is computed for $n=3,2,1$?
(b) (5 points) Give $f(n)$ the number of artithmetic operations needed to execute this algorithm.
(c) (2 points) Give a and α in $f(n)=\Theta\left(a \times n^{\alpha}\right)$.

