Math 211 - Spring 2006-2007 Maple Assignment 2

Due date: May 10, 2007

Important Instructions:

- Students are allowed to work in groups consisting of at most 3 students.
- Students will be interviewed based on which the assignment grades will be finalized
- Assignment submissions should be on Moodle
- Penalty of 20 points per day after May, 102007
- If you have any question pass by bliss 206 Tuesday and Thursday anytime between 11:00 and 2:00

Exercise 1. Write a procedure CompositeNumbers(n) which takes as input an integer n and prints all the composite numbers less than n. Test the procedure and save the results.

Exercise 2.

1. Write a procedure PrimeFactors1(n) which takes as input an integer n and returns a set containing all the prime numbers which divide n.

For example:

- PrimeFactors1(10) should return 2,5
- PrimeFactors1(396) should return 2, 3, 11
- PrimeFactors1(5940) should return 2, 3, 5, 11

2. Write a procedure PrimeFactors2(n,A) which takes as input an integer n and a set A containing the result returned by PrimeFactors1(n) and returns a new set containing the multiplicity of each of the elements of A.

For example:

- PrimeFactors2(10,PrimeFactors1(10)) should return 1,1
since $10=2^{1} * 5^{1}$
- PrimeFactors1(396,PrimeFactors1(396)) should return 2, 2, 1 since $396=2^{2} * 3^{2} * 11^{1}$
- PrimeFactors1(5940,PrimeFactors1(5940)) should return 2, 3, 1, 1 since $5940=2^{2} * 3^{2} * 5^{1} * 11^{1}$

3. Write a procedure $\operatorname{myLCM}(\mathbf{a}, \mathbf{b})$ which takes as input two integers a and b and returns their least common multiple by using PrimeFactors2.
4. Write a procedure $\operatorname{myGCD}(\mathbf{a}, \mathbf{b})$ which takes as input two integers a and b and returns their greatest common divisor by using PrimeFactors2.
5. Test each procedure and compare your results with the built-in gcd and lcm functions of Maple.

Exercise 3. Let $P(n)=P(n-1)+n^{2}$ with $P(1)=1$

1. Write an iterative procedure myIterativeEval(n) which takes as input an integer n and returns the value of $P(n)$.
2. Write a recursive procedure myRecursiveEval(n) which takes as input an integer n and returns the value of $P(n)$.
3. Test each procedure twice

Note. For the first two problems use the following functions of Maple:

1. isprime(n) - takes as input an integer n and returns true if n is prime and false if not.
2. nextprime(n) - takes as input an integer n and returns the next largest prime.
3. $\bmod (a, b)-$ takes as input two integers and returns the remainder computed upon dividing a by b.

GOOD LUCK \smile

