Math 211 — Discrete Structures, Fall 2006—-07
Course website:  http://people.aub.edu.lb/~kmakdisi/
Solutions to Quiz 2

1. Note: the different parts are UNRELATED.

a) (4 pts) In how many ways can one rearrange the letters of ALIBABA?

b) (5 pts) A bakery sells three types of manaqish: zaatar, cheese, and kishk. In how many ways can one buy no more
than 12 manaqish? (It is possible to buy any number between zero and twelve manaqish.)

¢) (5 pts) How many bitstrings of length 9 are there that have 000 at the beginning, the end, OR in the middle three
positions? (In other words, the bitstring should have the form 000zzzzarr —or— xzz000xzs —or— rraxzzx000.)

Answer. a) ALIBABA contains 3 As, 2 Bs, 1 I, and 1 L for a total of 7 letters. The number of permutations where some
|

elements are indistinguishable is therefore (This is incidentally equal to 420.)
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b) Let x1, z2, and x3 be the numbers of zaatar, cheese, and kishk manaqish respectively. We want to count the
cardinality ’{(:vl, T, 23) € N3 | 1y + 19 + 23 < 12}|. It is easier to introduce a “slack” variable z4 = 12 — x; — 9 — 3 € N,
and to count instead

|{(5€1,J)2,3}3,$4) € N4 | 1+ X2+ 23+ x4 = 12}|

124+4-1 1 1
+12 ) (If you wish, you can simplify <12) = <35), which is equal to 455.)

c) Let A, B, and C be the respectively sets of bitstrings of the form 000zzaxzzx, zox2000zz2, and zrrxzezz000. We want
to count |[AUBUC| = |A| + |B| + |C| — |ANB| — |ANC| — |BNC| + |ANBNC|. Note that |A| = |B| = |C| = 25, since in each
case we can choose six xs from {0, 1}. Similarly |[ANB| = |ANC| = |BNC| = 23 because we have three zs to choose: indeed,
ANB is the set of bitstrings of the form 000000zzx, ANC is the set of bitstrings of the form 000zzz000, and BNC' is the set
of bitstrings of the form zzxz000000. Finally, |ANBNC| = 1 because ANBNC = {000000000}. Putting this all together, we
see our answer is 26 426 + 26 — 23 — 23 _ 23 11 (incidentally equal to 169).
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2. a) (6 pts) Show algebraically that (k) ( v ) = (6) ( k: )

b) (8 pts) Show the above identity by a combinatorial argument.

This last quantity is (
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Answer. a) < > < ) k'(nn— Al . é!(r(zn— kkz.g)! = AT ﬁk: —or Exchanging the roles of k& and ¢, we again obtain

( €> ( i ) m, which is the same value as above. So the two values are equal, as claimed.

b) Let X be a set with | X| = n elements. We shall count the number of pairs (A, B) of two disjoint subsets A, B C X
such that |A| = k and |B| = £. Such a pair (4, B) can be counted either by first choosing the subset A C X in Z ways,
|X — A

L
pairs (A, B) is (Z) (n ; k) Similarly, if we choose the set B first and then choose the set A C X — B, this can be done

—k
and then choosing the subset B C X — A (to ensure that BNA = (}) in ( > = (n ¢ > Thus the total number of

l k

A more concrete way to express the above solution is that we have a room with n people in it, and we wish to count in
how many ways we can put k red hats and ¢ green hats on the heads of people in the room. (Either place the red hats first,
then the green hats, or vice-versa.)

-/
in (n) (n ) ways. Thus the two numbers are equal.

3. a) (3 pts) Fill in the blanks for the definition of the function implies. Its input are boolean (i.e., logical) values p, q
€ {true, false} and its output is true or false depending on whether p—q is true or not.

b) (6 pts) Write a function function sumofpositives (in GAP or pseudocode) which takes as input a list thelist,
and which outputs the sum of all the positive elements of thelist. For example, sumofpositives([2,3,-4,5,-1]) =
because 2 + 3 + 5 = 10.

¢) (6 pts) Write a function listofsquares (in GAP or pseudocode) that takes as input a list thelist, and that outputs
a list of the squares of the elements in thelist. For example, listofsquares([-1,2,3,-1,1]) = [1,4,9,1,1]. You may,
if you wish, use the command Add(11,y) which replaces the list 11 by putting y in after the end of 11.

Answer. a) First, if p = true, then the value of p — q is the same as the value of q. (This is immediate from the truth
table for —.) On the other hand, if p = false, then p — q is always true. Thus the answer is:

implies := function(p,q)
if p then return( q )
else return(  true )
fi; T T
end;

b) We keep track of the sum so far in a variable answer. We start with answer = 0, and we keep adding to it every positive
entry we find in thelist:



sumofpositives := function(thelist)
local x, answer;

answer := 0;
for x in thelist do
if (x > 0) then answer := answer + x; fi;
od;
return(answer) ;

end;
Note that we can also write the loop in terms of a variable i that goes from 1 to the length Length (thelist) of our input. In
that case we examine the element thelist[i] instead of the element x above, and add it to answer whenever it is positive.
¢) This time our variable answer is a list that keeps track of the squares that we have seen so far. Note that the
algorithm is structurally very similar to the algorithm of part (b). This time, however, we use Add to put a new element at
the end of the list answer instead of adding numbers into a sum.

listofsquares := function(thelist)
local x, answer;
answer := [];

for x in thelist do
Add (answer,x"2) ;
od;
return(answer) ;
end;

4. a) (7 pts) Show that
Y >0, zt < 5e”.

Hint: study the function h(x) = z*e™®, and use the fact that 4*e~* ~ 4.689 < 5.
b) (7 pts) Show from the definition of © that e + 2z* 4 2 is ©(e*). You may use the result of part (a) even if you
were not able to solve it.

Answer. a) The derivative of h(z) is h'(x) = 4a3e™® — z'e™® = (4 — 2)23e~*. Thus, for 0 < z < 4 we have h/(z) > 0, so
h(z) is increasing; on the other hand, for > 4. we have h'(z) < 0, so h(z) is decreasing. Thus the maximum value of h(z)
for x € [0, +00) is the value h(4) = 4*e¢=* ~ 4.689. In other words:

Ve >0, h(z)<h(4) <5

and hence Vo > 0, z*e™® < 5. Multiplying both sides by e® (which is positive!) then gives us the result that we want to
prove.

b) For z > 0, the function f(z) = e®+ 2z* + 23 is positive (all the terms in the sum are positive), and we will not bother
to distinguish between f(z) and the absolute value |f(x)|. Moreover, for > 1 we have 23 < 2. Thus, using part (a) for
the last < below, we obtain:

Ve >1, €% <e®+ 22t + 23 = f(x) < % + 3zt < e + 156" = 16€7.

Thus we have found constants ¢, C' > 0 (namely, ¢ =1 and C' = 16) and a constant k¥ = 1 such that Vz >k, ce® < f(z) <
Ce®. This shows that f(x) is ©(e”).

5. In this problem, we count functions f :{1,2,3,4,5,6} — {10, 20, 30,40, 50} satisfying certain properties.

a) (3 pts) How many functions f are injective?

b) (6 pts) How many functions f satisfy f=1({10,20}) = {1,2,3,4}?

¢) (6 pts) How many functions f satisfy f({1,2,3,4}) = {10,20}? Hint: first count the number of surjective functions
g:{1,2,3,4} — {10,20).

Answer. a) The answer is 0 by the pigeonhole principle: you cannot have an injective function from a set with 6 elements
to a set with 5 elements.
b) The condition f~1({10,20}) = {1,2,3,4} means that

f(z) € {10,20} « =€ {1,234}

In other words, f(1), f(2), f(3), f(4) € {10,20} and f(5), f(6) ¢ {10,20}. Thus we have 2 choices for each of the values
f(1), £(2), f(3), f(4) and 3 choices for each of f(5), f(6) (which must belong to {30,40,50}). The total number of functions
f is therefore 24 - 32 = 144.

¢) The condition f({1,2,3,4}) = {10,20} means that f(1), f(2), f(3), f(4) € {10,20} and that there exist x,y €
{1,2,3,4} for which f(z) = 10 and f(y) = 20. However, we have no restrictions on the values of f(5) and f(6). As a
result, to count the functions f, we start with a surjective function ¢ : {1,2,3,4} — {10,20}, which gives us the values
f(1) =g(1),..., f(4) = g(4). This can be done in 2* — 2 - 1* ways by the formula for surjective functions. We then choose
arbitrary values f(5), f(6) € {10, 20, 30,40, 50}, which can be done in 52 ways. Thus the total number of functions f in this
exercise is (24 — 2. 14)(5%) = 350.

Note: you can count the number of surjective functions ¢ without the formula. Just note that among all 2* choices of
functions from {1,2,3,4} to {10, 20}, there are exactly 2 functions that are not surjective: (1) the function whose value on
1,2,3,4 is always 10, and (2) the function whose value on 1,2,3,4 is always 20.



