American University of Beirut

Faculty of Engineering and Architecture

Spring 2014

Quiz 2

Profs:

Joseph Costantine
Shahwan Khoury

Student Name:

ID number:
Test ID 1001-1002
Section:

EECE 380- Engineering Electromagnetics

CLOSED BOOK Exam:

- Programmable Calculators are not allowed
- Provide your answers to the multiple choice questions on the computer card only
- Provide your answers to the comprehensive problems on the exam sheet

Section I: Multiple Choice Questions (40 pts- 8 pts each)

MCQ 1:

At Cartesian point $(-3,4,-1)$ which of these is incorrect:
a. $\quad \rho=-5$
b. $r=\sqrt{26}$
c. $\quad \theta=\tan ^{-1}\left(\frac{5}{-1}\right)$
d. $\quad \phi=\tan ^{-1}\left(\frac{4}{-3}\right)$

Complete Solution

a.

MCQ 2:

If $\vec{E}=4 \hat{a}_{\rho}-3 \hat{a}_{\phi}+5 \hat{a}_{z}$ at $(1, \pi / 2,0)$, the component of \vec{E} parallel to surface $\rho=1$ is:
a. $4 \hat{a}_{\rho}$
b. $5 \hat{a}_{z}$
c. $-3 \hat{a}_{\phi}$
d. $-3 \hat{a}_{\phi}+5 \hat{a}_{z}$
e. $5 \hat{a}_{\phi}+3 \hat{a}_{z}$

Complete Solution

d.

MCQ 3:

Point charges $\mathrm{Q}_{1}=1 \mathrm{nC}$ and $\mathrm{Q}_{2}=2 \mathrm{nC}$ are at a distance apart. Which of the following statements is incorrect?
a. The force on Q_{1} is repulsive
b. The force on Q_{2} is the same in magnitude as that on Q_{1}
c. As the distance between them decreases, the force on Q_{1} increases linearly
d. The force on Q_{2} is along the line joining them
e. None of the above

Complete Solution

C

MCO 4:

Point charges Q_{1} and Q_{2} are, respectively, located at $(4,0,-3)$ and $(2,0,1)$. If $\mathrm{Q}_{2}=4 \mathrm{nC}$, find Q_{1} such that the electric field at $(5,0,6)$ has no Z component.
a. $\mathrm{Q}_{1}=-5.4 \mathrm{nC}$
b. $\mathrm{Q}_{1}=-3.33 \mathrm{nC}$
c. $Q_{1}=-8.323 n C$
d. $\mathrm{Q}_{1}=-2.53 \mathrm{nC}$
e. $Q_{1}=-10.34 n C$

Complete Solution

$$
\begin{aligned}
E(5,0,6) & =\frac{Q_{1}}{4 \pi \varepsilon_{0}} \frac{[(5,0,6)-(4,0,-3)]}{|(5,0,6)-(4,0,-3)|^{3}}+\frac{Q_{2}}{4 \pi \varepsilon_{0}} \frac{[(5,0,6)-(2,0,1)]}{|(5,0,6)-(2,0,1)|^{3}} \\
& =\frac{Q_{1}}{4 \pi \varepsilon_{0}} \frac{(1,0,9)}{(\sqrt{82})^{3}}+\frac{Q_{2}}{4 \pi \varepsilon_{0}} \frac{(3,0,5)}{(34)^{3 / 2}}
\end{aligned}
$$

$$
\text { If } E_{z}=0, \text { then }
$$

$$
\begin{aligned}
& \frac{9 Q_{1}}{4 \pi \varepsilon_{0}} \frac{1}{(82)^{3 / 2}}+\frac{5 Q_{2}}{4 \pi \varepsilon_{0}} \frac{1}{(34)^{3 / 2}}=0 \\
& Q_{1}=-\frac{5}{9} Q_{2}\left(\frac{82}{34}\right)^{3 / 2}=-\frac{5}{9} 4\left(\frac{82}{34}\right)^{3 / 2} \mathrm{nC} \\
& \\
& =-8.3232 \mathrm{nC}
\end{aligned}
$$

MCQ 5:

A can of tomatoes is in the form of a wedge that is defined by $0<\rho<2,0<\Phi<\pi / 4,0<z<1$. Given that the wedge has a volume charge distribution $\rho_{v}=4 \rho^{2} z \cos \phi \mathrm{nC} / \mathrm{m}^{3}$, find the total charge contained in the wedge.
a. $\mathrm{Q}=6.754 \mathrm{nC}$
b. $\mathrm{Q}=5.657 \mathrm{nC}$
c. $\mathrm{Q}=7.856 \mathrm{nC}$
d. $\mathrm{Q}=9.324 \mathrm{nC}$
e. None of the above

Complete Solution

$$
\begin{aligned}
& Q=\int_{v} \rho_{v} d v=\iiint 4 \rho^{2} z \cos \phi \rho d \rho d \phi d z \quad \mathrm{nC} \\
& =4 \int_{0}^{2} \rho^{3} d \rho \int_{0}^{1} z d z \int_{0}^{\pi / 4} \cos \phi d \phi=\left.\rho^{4}\left|\begin{array}{l}
2 \\
0 \\
z^{2} \\
2
\end{array}\right|_{0}^{1}(\sin \phi)\right|_{0} ^{\pi / 4} \\
& =(16)(0.5)(\sin \pi / 4)=5.657 \mathrm{nC}
\end{aligned}
$$

MCQ 7:

Find the electric field at point $\mathrm{P}(0,0,8 \mathrm{~m})$ resulting from a surface charge density $\rho_{s}=5 \mathrm{nC} / \mathrm{m}^{2}$ existing on the $\mathrm{z}=0$ plane from $\rho=2 \mathrm{~m}$ to $\rho=6 \mathrm{~m}$.
a. $\quad \vec{E}=24 \hat{a}_{z} V / m$
b. $\quad \vec{E}=12 \hat{a}_{z} \mathrm{~V} / \mathrm{m}$
c. $\vec{E}=16 \hat{a}_{z} \mathrm{~V} / \mathrm{m}$
d. $\vec{E}=8 \hat{a}_{z} V / m$
e. $\vec{E}=48 \hat{a}_{z} V / m$

Complete Solution

Find an expression for potential and then evaluate the gradient at the point.

$$
\begin{aligned}
& V=\int \frac{d Q}{4 \pi \varepsilon_{o} R}, \quad R=\sqrt{\rho^{2}+h^{2}}, d Q=\rho_{S} \rho d \rho d \phi, \text { so } \mathrm{V}=\int \frac{\rho_{S} \rho d \rho d \phi}{4 \pi \varepsilon_{o} \sqrt{\rho^{2}+h^{2}}} \\
& \mathrm{~V}=\frac{\rho_{S}}{2 \varepsilon_{o}} \int_{a}^{b} \frac{\rho d \rho}{\sqrt{\rho^{2}+h^{2}}}=\left.\frac{\rho_{S}}{2 \varepsilon_{o}} \sqrt{\rho^{2}+h^{2}}\right|_{a} ^{b}=\frac{\rho_{S}}{2 \varepsilon_{o}}\left[\sqrt{b^{2}+h^{2}}-\sqrt{a^{2}+h^{2}}\right] .
\end{aligned}
$$

Now we let $\mathrm{h}=\mathrm{z}$ and $\mathbf{E}=-\nabla V$;

$$
\begin{aligned}
& \mathbf{E}=-\frac{\rho_{S}}{2 \varepsilon_{o}}\left[\frac{\partial}{\partial z}\left(b^{2}+z^{2}\right)^{1 / 2}-\frac{\partial}{\partial z}\left(a^{2}+z^{2}\right)^{1 / 2}\right] \mathbf{a}_{z} \\
& =-\frac{\rho_{S}}{2 \varepsilon_{o}}\left[\frac{1}{2}\left(b^{2}+z^{2}\right)^{-1 / 2} 2 z-\frac{1}{2}\left(a^{2}+z^{2}\right)^{-1 / 2} 2 z\right] \mathbf{a}_{z}=-\frac{\rho_{S}}{2 \varepsilon_{o}}\left[\frac{z}{\sqrt{b^{2}+z^{2}}}-\frac{z}{\sqrt{a^{2}+z^{2}}}\right] \mathbf{a}_{z}
\end{aligned}
$$

Plugging in the values we find $\mathbf{E}=48 \mathrm{~V} / \mathrm{m} \mathbf{a}_{2}$.

MCQ 8:

Two point charges $\mathrm{Q}=2 \mathrm{nC}$ and $\mathrm{Q}=-4 \mathrm{nC}$ are located at $(1,0,3)$ and $(-2,1,5)$, respectively. Determine the potential at $\mathrm{P}(1,-2,3)$
a. $\mathrm{V}=1.235 \mathrm{~V}$
b. $V=1.325 \mathrm{~V}$
c. $V=3.125 \mathrm{~V}$
d. $V=5.312 \mathrm{~V}$
e. $V=2.315 \mathrm{~V}$

Complete Solution

$$
\begin{aligned}
V_{P}= & \frac{Q_{1}}{4 \pi \varepsilon_{0} r_{1}}+\frac{Q_{2}}{4 \pi \varepsilon_{r} r_{2}}=\frac{10^{-9}}{4 \pi \times \frac{10^{-9}}{36 \pi}}\left[\frac{2}{|(1,-2,3)-(1,0,3)|}-\frac{4}{|(1,-2,3)-(-2,1,5)|}\right] \\
& =9\left[\frac{2}{2}-\frac{4}{\sqrt{9+9+4}}\right]=1.325 \mathrm{~V}
\end{aligned}
$$

Section II: Comprehensive Problems

Problem 1 (20 pts):

In a region in free space, the electric flux density is found to be:

$$
D=\left\{\begin{array}{cc}
\rho_{0}(Z+d) \hat{a}_{z} C / m^{2} & (-2 d \leq z<0) \\
-\rho_{0}(Z-2 d) \hat{a}_{z} C / m^{2} & (0 \leq z \leq 2 d)
\end{array}\right.
$$

Everywhere else $\mathbf{D}=\mathbf{0}$.

a) Find the volume charge density ρ_{v} as a function of position everywhere (5 pts)

Using $\nabla \cdot \mathbf{D}=\rho_{v}$, find the volume charge density as a function of position everywhere: Use

$$
\rho_{v}=\nabla \cdot \mathbf{D}=\frac{d D_{z}}{d z}= \begin{cases}\rho_{0} & (-2 d \leq z \leq 0) \\ -\rho_{0} & (0 \leq z \leq 2 d)\end{cases}
$$

b) Determine the electric flux that passes through the surface defined by $\mathrm{Z}=0,-a \leq x \leq a$, $-b \leq y \leq b \quad(5 \mathrm{pts})$
determine the electric flux that passes through the surface defined by $z=0,-a \leq x \leq a$, $-b \leq y \leq b$: In the $x-y$ plane, \mathbf{D} evaluates as the constant $\mathbf{D}(0)=2 d \rho_{0} \mathbf{a}_{z}$. Therefore the flux passing through the given area will be

$$
\Phi=\int_{-a}^{a} \int_{-b}^{b} 2 d \rho_{0} d x d y=\underline{8 a b d \rho_{0}} \mathrm{C}
$$

c) Determine the total charge contained within the region $-a \leq x \leq a,-b \leq y \leq b$,

$$
-d \leq z \leq d \quad(5 \mathrm{pts})
$$

determine the total charge contained within the region $-a \leq x \leq a,-b \leq y \leq b$, $-d \leq z \leq d$: From part a, we have equal and opposite charge densities above and below the $x-y$ plane. This means that within a region having equal volumes above and below the plane, the net charge is zero.
d) Determine the total charge contained within the region $-a \leq x \leq a,-b \leq y \leq b$,
$0 \leq z \leq 2 d \quad$ (5 pts)
determine the total charge contained within the region $-a \leq x \leq a,-b \leq y \leq b$, $0 \leq z \leq 2 d$. In this case,

$$
Q=-\rho_{0}(2 a)(2 b)(2 d)=\underline{-8 a b d \rho_{0}} \mathrm{C}
$$

This is equivalent to the net inward flux of \mathbf{D} into the volume, as was found in part b.

Problem 2 (20 pts):

A matching network, using a reactive element in series with a length d of a transmission line, is to be used to match $35-\mathrm{j} 50 \Omega$ load to a 100Ω transmission line. Find the through line length d and the value of the reactive element for $\mathrm{F}=1 \mathrm{GHz}$ if:
a) a series capacitor is used. (10 pts)

First we normalize the load and locate it on the Smith Chart (point a, at $z_{\mathrm{L}}=0.35-\mathrm{j} 0.5$, WTG $=$ 0.419λ).
(a) need to move to point b , at $\mathrm{z}=1+\mathrm{j} 1.4$, so that a capacitive element of value $\mathrm{jx}=-\mathrm{j} 1.4$ can be added to provide an impedance match. Moving to this point b gives $\mathrm{d}=0.500 \lambda+0.173 \lambda-0.419 \lambda=$ 0.254λ. The capacitance is

$$
\begin{aligned}
& \frac{-j}{\omega C Z_{o}}=-j 1.4, \\
& C=\frac{1}{2 \pi\left(1 \times 10^{9}\right)(100)(1.4)}=1.14 \mathrm{pF}
\end{aligned}
$$

b) If an inductor is used. (10 pts)
(b) Now we need to move to point c , at $z=1-\mathrm{j} 1.4$, so that an inductive element of value $\mathrm{jx}=+\mathrm{j} 1.4$ can be added. Moving to this point c gives $\mathrm{d}=$ $0.500 \lambda+0.327 \lambda-0.419 \lambda=0.408 \lambda$. The inductance is

$$
\frac{j \omega L}{Z_{o}}=j 1.4, \quad L=\frac{(1.4)(100)}{2 \pi\left(1 \times 10^{\circ}\right)}=22.3 \mathrm{nH}
$$

Problem 3 (20 pts):

A load impedance $\mathrm{Z}_{\mathrm{L}}=200+\mathrm{j} 160 \Omega$ is to be matched to a 100Ω line using a shorted shunt stub tuner. Find the solution that minimizes the length of the shorted stub.

Refer to Fig. P2.37a for the shunt stub circuit. (1)Normalize the load (point a, $z_{\mathrm{L}}=2.0+\mathrm{j} 1.6$).
(2) locate the normalized load admittance: y_{L} (point b)
(3) move from point b to point c , at the $\boldsymbol{y}=1+\mathrm{jb}$ circle $(0.500 \lambda+0.170 \lambda-0.458 \lambda=0.212 \lambda)$
(4) move from the shorted end of the stub (normalized admittance point) to the point $\boldsymbol{y}=0-$ jb. $(\ell=0.354 \lambda-0.250 \lambda=0.104 \lambda$. $)$

