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Chapter 8:  Reflection, Transmission, and Waveguides 
 
 
Lessons #50 and 51 
Chapter — Section:  8-1 
Topics:  Normal incidence 
 
Highlights: 

• Analogy to transmission line 
• Reflection and transmission coefficient 

Special Illustrations: 
• Example 8-1 
• CD-ROM Modules 8.1-8.5 
• CD-ROM Demos  8.2 
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Lesson #52 
Chapter — Section:  8-2 
Topics:  Snell’s laws 
 
Highlights: 

• Reflection and refraction 
• Index of refraction 

 
Special Illustrations: 

• Example 8-4 
• Technology Brief on “Lasers” (CD-ROM) 

 
 

Lasers  

Lasers are used in CD and DVD players, bar-code readers, eye surgery and multitudes of other 
systems and applications. A laser—acronym for light amplification by stimulated emission of 
radiation—is a source of monochromatic (single wavelength), coherent (uniform wavefront), 
narrow-beam light, in contrast with other sources of light (such as the sun or a light bulb) which 
usually encompass waves of many different wavelengths with random phase (incoherent). A laser 
source generating microwaves is called a maser. The first maser was built in 1953 by Charles 
Townes and the first laser was constructed in 1960 by Theodore Maiman.  
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Lesson #53 
Chapter — Section:  8-3 
Topics:  Fiber optics 
 
Highlights: 

• Structure of an optical fiber 
• Dispersion 

 
Special Illustrations: 

• Example 8-5 
• Technology Brief on “Bar-Code Reader” (CD-ROM) 

 
 

Bar Code Readers  

A bar code consists of a sequence of parallel bars of certain widths, usually printed in black 
against a white background, configured to represent a particular binary code of information about 
a product and its manufacturer.  Laser scanners can read the code and transfer the information to a 
computer, a cash register, or a display screen. For both stationary scanners built into checkout 
counters at grocery stores and handheld units that can be pointed at the bar-coded object like a 
gun, the basic operation of a bar-code reader is the same.  
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Lessons #54 and 55 
Chapter — Section:  8-4 
Topics:  Oblique incidence 
 
Highlights: 

• Parallel and perpendicular polarizations 
• Brewster angle 
• Total internal reflection 

 
Special Illustrations: 

• Example 8-6 and 8-7 
• CD-ROM Demos 8.4-8.6 
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Lesson #56 
Chapter — Section:  8-5 
Topics:  Reflectivity and transmissivity 
 
Highlights: 

• Power relations 
 
Special Illustrations: 

• Example 8-7 
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Lessons #57–59 
Chapter — Section:  8-6 to 8-10 
Topics:  Waveguides 
 
Highlights: 

• TE and TM modes 
• Cutoff frequency 
• Phase and group velocities 

 
Special Illustrations: 

• Examples 8-8, 8-9, and 8-10 
 

 
 
 
Lesson #60 
Chapter — Section:  8-11 
Topics:  Cavity Resonators 
 
Highlights: 

• Resonant frequency 
• Q factor 
• Applications 
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Chapter 8

Section 8-1: Reflection and Transmission at Normal Incidence

Problem 8.1 A plane wave in air with an electric field amplitude of 20 V/m is
incident normally upon the surface of a lossless, nonmagnetic medium with εr = 25.
Determine:

(a) the reflection and transmission coefficients,
(b) the standing-wave ratio in the air medium, and
(c) the average power densities of the incident, reflected, and transmitted waves.

Solution:
(a)

η1 = η0 = 120π (Ω), η2 =
η0√

εr
=

120π
5

= 24π (Ω).

From Eqs. (8.8a) and (8.9),

Γ =
η2 −η1

η2 +η1
=

24π−120π
24π+120π

=
−96
144

= −0.67,

τ = 1+Γ = 1−0.67 = 0.33.

(b)

S =
1+ |Γ|
1−|Γ| =

1+0.67
1−0.67

= 5.

(c) According to Eqs. (8.19) and (8.20),

Si
av =

|E i
0|2

2η0
=

400
2×120π

= 0.52 W/m2,

Sr
av = |Γ|2Si

av = (0.67)2 ×0.52 = 0.24 W/m2,

St
av = |τ|2 |E

i
0|2

2η2
= |τ|2 η1

η2
Si

av = (0.33)2 × 120π
24π

×0.52 = 0.28 W/m2.

Problem 8.2 A plane wave traveling in medium 1 with εr1 = 2.25 is normally
incident upon medium 2 with εr2 = 4. Both media are made of nonmagnetic, non-
conducting materials. If the electric field of the incident wave is given by

Ei = ŷ8cos(6π×109t −30πx) (V/m),

(a) obtain time-domain expressions for the electric and magnetic fields in each of
the two media, and
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(b) determine the average power densities of the incident, reflected and transmitted
waves.

Solution:
(a)

Ei = ŷ8cos(6π×109t −30πx) (V/m),

η1 =
η0√εr1

=
η0√
2.25

=
η0

1.5
=

377
1.5

= 251.33 Ω,

η2 =
η0√εr2

=
η0√

4
=

377
2

= 188.5 Ω,

Γ =
η2 −η1

η2 +η1
=

1/2−1/1.5
1/2+1/1.5

= −0.143,

τ = 1+Γ = 1−0.143 = 0.857,

Er = ΓEi = −1.14 ŷcos(6π×109t +30πx) (V/m).

Note that the coefficient of x is positive, denoting the fact that Er belongs to a wave
traveling in −x-direction.

E1 = Ei +Er = ŷ [8cos(6π×109t −30πx)−1.14cos(6π×109t +30πx)] (A/m),

Hi = ẑ
8

η1
cos(6π×109t −30πx) = ẑ31.83cos(6π×109t −30πx) (mA/m),

Hr = ẑ
1.14
η1

cos(6π×109t +30πx) = ẑ4.54cos(6π×109t +30πx) (mA/m),

H1 = Hi +Hr

= ẑ [31.83cos(6π×109t −30πx)+4.54cos(6π×109t +30πx)] (mA/m).

Since k1 = ω√µε1 and k2 = ω√µε2 ,

k2 =

√
ε2

ε1
k1 =

√
4

2.25
30π = 40π (rad/m),

E2 = Et = ŷ8τcos(6π×109t −40πx) = ŷ6.86cos(6π×109t −40πx) (V/m),

H2 = Ht = ẑ
8τ
η2

cos(6π×109t −40πx) = ẑ36.38cos(6π×109t −40πx) (mA/m).

(b)

Si
av = x̂

82

2η1
=

64
2×251.33

= x̂127.3 (mW/m2),

Sr
av = −|Γ|2Si

av = −x̂(0.143)2 ×0.127 = −x̂2.6 (mW/m2),
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St
av =

|E t
0|2

2η2

= x̂τ2 (8)2

2η2
= x̂

(0.86)264
2×188.5

= x̂124.7 (mW/m2).

Within calculation error, Si
av +Sr

av = St
av.

Problem 8.3 A plane wave traveling in a medium with εr1 = 9 is normally incident
upon a second medium with εr2 = 4. Both media are made of nonmagnetic, non-
conducting materials. If the magnetic field of the incident plane wave is given by

Hi = ẑ2cos(2π×109t − ky) (A/m),

(a) obtain time domain expressions for the electric and magnetic fields in each of
the two media, and

(b) determine the average power densities of the incident, reflected and transmitted
waves.

Solution:
(a) In medium 1,

up =
c√εr1

=
3×108
√

9
= 1×108 (m/s),

k1 =
ω
up

=
2π×109

1×108 = 20π (rad/m),

Hi = ẑ2cos(2π×109t −20πy) (A/m),

η1 =
η0√εr1

=
377

3
= 125.67 Ω,

η2 =
η0√εr2

=
377

2
= 188.5 Ω,

Ei = −x̂2η1 cos(2π×109t −20πy)

= −x̂251.34cos(2π×109t −20πy) (V/m),

Γ =
η2 −η1

η2 +η1
=

188.5−125.67
188.5+125.67

= 0.2,

τ = 1+Γ = 1.2,

Er = −x̂251.34×0.2cos(2π×109t +20πy)

= −x̂50.27cos(2π×109t +20πy) (V/m),
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Hr = −ẑ
50.27

η1
cos(2π×109t +20πy)

= −ẑ0.4cos(2π×109t +20πy) (A/m),

E1 = Ei +Er

= −x̂ [25.134cos(2π×109t −20πy)+50.27cos(2π×109t +20πy)] (V/m),

H1 = Hi +Hr = ẑ [2cos(2π×109t −20πy)−0.4cos(2π×109t +20πy)] (A/m).

In medium 2,

k2 =

√
ε2

ε1
k1 =

√
4
9
×20π =

40π
3

(rad/m),

E2 = Et = −x̂251.34τcos

(
2π×109t − 40πy

3

)

= −x̂301.61cos

(
2π×109t − 40πy

3

)
(V/m),

H2 = Ht = ẑ
301.61

η2
cos

(
2π×109t − 40πy

3

)

= ẑ1.6cos

(
2π×109t − 40πy

3

)
(A/m).

(b)

Si
av = ŷ

|E0|2
2η1

= ŷ
(251.34)2

2×125.67
= ŷ251.34 (W/m2),

Sr
av = −ŷ |Γ|2(251.34) = ŷ10.05 (W/m2),

St
av = ŷ(251.34−10.05) = ŷ241.29 (W/m2).

Problem 8.4 A 200-MHz left-hand circularly polarized plane wave with an electric
field modulus of 5 V/m is normally incident in air upon a dielectric medium with
εr = 4 and occupying the region defined by z ≥ 0.

(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximum at z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.
(c) Write expressions for the electric field phasors of the reflected wave, the

transmitted wave, and the total field in the region z ≤ 0.
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(d) Determine the percentages of the incident average power reflected by the
boundary and transmitted into the second medium.

Solution:
(a)

k1 =
ω
c

=
2π×2×108

3×108 =
4π
3

rad/m,

k2 =
ω

up2

=
ω
c
√

εr2 =
4π
3

√
4 =

8π
3

rad/m.

LHC wave:

Ẽi = a0(x̂+ ŷe jπ/2)e− jkz = a0(x̂ + jŷ)e− jkz,

Ei(z, t) = x̂a0 cos(ωt − kz)− ŷa0 sin(ωt − kz),

|Ei| = [a2
0 cos2(ωt − kz)+a2

0 sin2(ωt − kz)]1/2 = a0 = 5 (V/m).

Hence,
Ẽi = 5(x̂ + jŷ)e− j4πz/3 (V/m).

(b)
η1 = η0 = 120π (Ω), η2 =

η0√
εr

=
η0

2
= 60π (Ω).

Equations (8.8a) and (8.9) give

Γ =
η2 −η1

η2 +η1
=

60π−120π
60π+120π

=
−60
180

= −1
3

, τ = 1+Γ =
2
3

.

(c)

Ẽr = 5Γ(x̂ + jŷ)e jk1z = −5
3
(x̂+ jŷ)e j4πz/3 (V/m),

Ẽt = 5τ(x̂ + jŷ)e− jk2z =
10
3

(x̂+ jŷ)e− j8πz/3 (V/m),

Ẽ1 = Ẽi + Ẽr = 5(x̂ + jŷ)

[
e− j4πz/3 − 1

3
e j4πz/3

]
(V/m).

(d)

% of reflected power = 100×|Γ|2 =
100

9
= 11.11%,

% of transmitted power = 100×|τ|2 η1

η2
= 100×

(
2
3

)2

× 120π
60π

= 88.89%.
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Problem 8.5 Repeat Problem 8.4 after replacing the dielectric medium with a poor
conductor characterized by εr = 2.25, µr = 1, and σ = 10−4 S/m.

Solution:
(a) Medium 1:

η1 = η0 = 120π (Ω), k1 =
ω
c

=
2π×2×108

3×108 =
4π
3

(rad/m).

Medium 2:
σ2

ωε2
=

10−4 ×36π
2π×2×108 ×2.25×10−9 = 4×10−3.

Hence, medium 2 is a low-loss dielectric. From Table 7-1,

α2 =
σ2

2

√
µ2

ε2

=
σ2

2
120π√εr2

=
σ2

2
× 120π√

2.25
=

10−4

2
× 120π

1.5
= 1.26×10−2 (NP/m),

β2 = ω
√

µ2ε2 =
ω√εr2

c
= 2π (rad/m),

η2 =

√
µ2

ε2

(
1+

jσ2

2ωε2

)
=

120π√εr2

(
1+ j2×10−3)' 120π

1.5
= 80π (Ω).

LHC wave:

Ẽi = a0(x̂ + jŷ)e− jk1z,

|Ẽi| = a0 = 5 (V/m),

Ẽi = 5(x̂+ jŷ)e− j4πz/3 (V/m).

(b) According to Eqs. (8.8a) and (8.9),

Γ =
η2 −η1

η2 +η1
=

80π−120π
80π+120π

= −0.2, τ = 1+Γ = 1−0.2 = 0.8.

(c)

Ẽr = 5Γ(x̂ + jŷ)e jk1z = −(x̂+ jŷ)e j4πz/3 (V/m),

Ẽt = 5τ(x̂ + jŷ)e−α2ze− jβzz = 4(x̂ + jŷ)e−1.26×10−2ze− j2πz (V/m),

Ẽ1 = Ẽi + Ẽr = 5(x̂ + jŷ)[e− j4πz/3 −0.2e j4πz/3] (V/m).
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(d)

% of reflected power = 100|Γ|2 = 100(0.2)2 = 4%,

% of transmitted power = 100|τ|2 η1

η2
= 100(0.8)2 × 120π

80π
= 96%.

Problem 8.6 A 50-MHz plane wave with electric field amplitude of 50 V/m is
normally incident in air onto a semi-infinite, perfect dielectric medium with εr = 36.
Determine (a) Γ, (b) the average power densities of the incident and reflected waves,
and (c) the distance in the air medium from the boundary to the nearest minimum of
the electric field intensity, |E|.
Solution:

(a)

η1 = η0 = 120π (Ω), η2 =

√
µ2

ε2
=

120π√εr2

=
120π

6
= 20π (Ω),

Γ =
η2 −η1

η2 +η1
=

20π−120π
20π+120π

= −0.71.

Hence, |Γ| = 0.71 and θη = 180◦.
(b)

Si
av =

|E i
0|2

2η1
=

(50)2

2×120π
= 3.32 (W/m2),

Sr
av = |Γ|2Si

av = (0.71)2 ×3.32 = 1.67 (W/m2).

(c) In medium 1 (air),

λ1 =
c
f

=
3×108

5×107 = 6 m.

From Eqs. (8.16) and (8.17),

lmax =
θrλ1

4π
=

π×6
4π

= 1.5 m,

lmin = lmax −
λ1

4
= 1.5−1.5 = 0 m (at the boundary).

Problem 8.7 What is the maximum amplitude of the total electric field in the air
medium of Problem 8.6, and at what nearest distance from the boundary does it
occur?
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Solution: From Problem 8.6, Γ = −0.71 and λ = 6 m.

|Ẽ1|max = (1+ |Γ|)E i
0 = (1+0.71)×50 = 85.5 V/m,

lmax =
θrλ1

4π
=

π×6
4π

= 1.5 m.

Problem 8.8 Repeat Problem 8.6 after replacing the dielectric medium with a
conductor with εr = 1, µr = 1, and σ = 2.78×10−3 S/m.

Solution:
(a) Medium 1:

η1 = η0 = 120π = 377 (Ω), λ1 =
c
f

=
3×108

5×107 = 6 m,

Medium 2:
σ2

ωε2
=

2.78×10−3 ×36π
2π×5×107 ×10−9 = 1.

Hence, Medium 2 is a quasi-conductor. From Eq. (7.70),

η2 =

√
µ2

ε2

(
1− j

ε′′2
ε′2

)−1/2

= 120π
(

1− j
σ2

ωε2

)−1/2

= 120π(1− j1)−1/2

= 120π(
√

2)−1/2e j22.5◦ = (292.88+ j121.31) (Ω).

Γ =
η2 −η1

η2 +η1
=

(292.88+ j121.31)−377
(292.88+ j121.31)+377

= −0.09+ j0.12 = 0.22∠114.5◦ .

(b)

Si
av =

|E i
0|2

2η1
=

502

2×120π
= 3.32 (W/m2),

|Sr
av| = |Γ|2Si

av = (0.22)2(3.32) = 0.16 (W/m2).

(c) In medium 1 (air),

λ1 =
c
f

=
3×108

5×107 = 6 m.

For θr = 114.5◦ = 2 rad, Eqs. (8.16) and (8.17) give

lmax =
θrλ1

4π
+

(0)λ1

2
=

2(6)

4
+0 = 3 m,
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lmin = lmax −
λ1

4
= 3− 6

4
= 3−1.5 = 1.5 m.

Problem 8.9 The three regions shown in Fig. 8-32 (P8.9) contain perfect
dielectrics. For a wave in medium 1 incident normally upon the boundary at z = −d,
what combination of εr2 and d produce no reflection? Express your answers in terms
of εr1 , εr3 and the oscillation frequency of the wave, f .

Medium 2

εr2

Medium 3

εr3

Medium 1

εr1

z = -d z = 0

z

d

Figure P8.9: Three dielectric regions.

Solution: By analogy with the transmission-line case, there will be no reflection at
z = −d if medium 2 acts as a quarter-wave transformer, which requires that

d =
λ2

4

and
η2 =

√
η1η3 .

The second condition may be rewritten as

η0√εr2

=

[
η0√εr1

η0√εr3

]1/2

, or εr2 =
√

εr1εr3 ,

λ2 =
λ0√εr2

=
c

f
√εr2

=
c

f (εr1 εr3)
1/4

,

and
d =

c

4 f (εr1εr3)
1/4

.
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Problem 8.10 For the configuration shown in Fig. 8-32 (P8.9), use transmission-
line equations (or the Smith chart) to calculate the input impedance at z = −d for
εr1 = 1, εr2 = 9, εr3 = 4, d = 1.2 m, and f = 50 MHz. Also determine the fraction
of the incident average power density reflected by the structure. Assume all media
are lossless and nonmagnetic.

Solution: In medium 2,

λ =
λ0√εr2

=
c

f
√εr2

=
3×108

5×107 ×3
= 2 m.

Hence,

β2 =
2π
λ2

= π rad/m, β2d = 1.2π rad.

At z = −d, the input impedance of a transmission line with load impedance ZL is
given by Eq. (2.63) as

Zin(−d) = Z0

(
ZL + jZ0 tanβ2d
Z0 + jZL tanβ2d

)
.

In the present case, Z0 = η2 = η0/
√εr2 = η0/3 and ZL = η3 = η0/

√εr3 = η0/2,
where η0 = 120π (Ω). Hence,

Zin(−d) = η2

(
η3 + jη2 tan β2d
η2 + jη3 tan β2d

)
=

η0

3

(
1
2 + j

(
1
3

)
tan1.2π

1
3 + j

(
1
2

)
tan1.2π

)
= η0(0.35− j0.14).

At z = −d,

Γ =
Zin −Z1

Zin +Z1
=

η0(0.35− j0.14)−η0

η0(0.35− j0.14)+η0
= 0.49e− j162.14◦ .

Fraction of incident power reflected by the structure is |Γ|2 = |0.49|2 = 0.24.

Problem 8.11 Repeat Problem 8.10 after interchanging εr1 and εr3 .

Solution: In medium 2,

λ =
λ0√εr2

=
c

f
√εr2

=
3×108

5×107 ×3
= 2 m.
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Hence,

β2 =
2π
λ2

= π rad/m, β2d = 1.2π rad.

At z = −d, the input impedance of a transmission line with impedance ZL is given as
Eq. (2.63),

Zin(−d) = Z0

(
ZL + jZ0 tanβd
Z0 + jZL tanβ2d

)
.

In the present case, Z0 = η2 = η0/
√εr2 = η0/3, ZL = η3 = η0/

√εr1 = η0, where
η0 = 120π (Ω). Hence,

Zin(−d) = η2

(
η3 + jη2 tan1.2π
η2 + jη3 tan1.2π

)

=
η0

3

(
1+( j/3) tan 1.2π
(1/3)+ j tan 1.2π

)

= η0

(
1+( j/3) tan 1.2π

1+ j3tan 1.2π

)
= (0.266− j0.337)η0 = 0.43η0∠−51.7◦ .

At z = −d,

Γ =
Zin −Z1

Zin +Z1
=

0.43∠−51.7◦ − 1
2

0.43∠−51.7◦ + 1
2

= 0.49∠−101.1◦ .

Fraction of incident power reflected by structure is |Γ|2 = 0.24.

Problem 8.12 Orange light of wavelength 0.61 µm in air enters a block of glass
with εr = 1.44. What color would it appear to a sensor embedded in the glass? The
wavelength ranges of colors are violet (0.39 to 0.45 µm), blue (0.45 to 0.49 µm),
green (0.49 to 0.58 µm), yellow (0.58 to 0.60 µm), orange (0.60 to 0.62 µm), and red
(0.62 to 0.78 µm).

Solution: In the glass,

λ =
λ0√

εr
=

0.61√
1.44

= 0.508 µm.

The light would appear green.

Problem 8.13 A plane wave of unknown frequency is normally incident in air upon
the surface of a perfect conductor. Using an electric-field meter, it was determined
that the total electric field in the air medium is always zero when measured at a
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distance of 2 m from the conductor surface. Moreover, no such nulls were observed
at distances closer to the conductor. What is the frequency of the incident wave?

Solution: The electric field of the standing wave is zero at the conductor surface,
and the standing wave pattern repeats itself every λ/2. Hence,

λ
2

= 2 m, or λ = 4 m,

in which case

f =
c
λ

=
3×108

4
= 7.5×107 = 75 MHz.

Problem 8.14 Consider a thin film of soap in air under illumination by yellow light
with λ = 0.6 µm in vacuum. If the film is treated as a planar dielectric slab with
εr = 1.72, surrounded on both sides by air, what film thickness would produce strong
reflection of the yellow light at normal incidence?

Solution: The transmission line analogue of the soap-bubble wave problem is shown
in Fig. P8.14(b) where the load ZL is equal to η0, the impedance of the air medium
on the other side of the bubble. That is,

η0 = 377 Ω, η1 =
377√
1.72

= 287.5 Ω.

The normalized load impedance is

zL =
η0

η1
= 1.31.

For the reflection by the soap bubble to be the largest, Zin needs to be the most
different from η0. This happens when zL is transformed through a length λ/4. Hence,

L =
λ
4

=
λ0

4
√

εr
=

0.6 µm

4
√

1.72
= 0.115 µm,

where λ is the wavelength of the soap bubble material. Strong reflections will also
occur if the thickness is greater than L by integer multiples of nλ/2 = (0.23n) µm.

Hence, in general

L = (0.115+0.23n) µm, n = 0,1,2, . . . .

According to Section 2-7.5, transforming a load ZL = 377 Ω through a λ/4 section
of Z0 = 287.5 Ω ends up presenting an input impedance of

Zin =
Z2

0

ZL
=

(287.5)2

377
= 219.25 Ω.
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Yellow Light

λ = 0.6 µm

Air Soap Air
εr1=1 εr3=1εr2=1.72

L

(b) Transmission-line equivalent circuit

η0 = 377Ω η2 
ZL = η0 = 377 Ω

(a) Yellow light incident on soap bubble.

Figure P8.14: Diagrams for Problem 8.14.

This Zin is at the input side of the soap bubble. The reflection coefficient at that
interface is

Γ =
Zin −η0

Zin +η0
=

219.25−377
219.25+377

= −0.27.

Any other thickness would produce a reflection coeffficient with a smaller magnitude.

Problem 8.15 A 5-MHz plane wave with electric field amplitude of 10 (V/m) is
normally incident in air onto the plane surface of a semi-infinite conducting material
with εr = 4, µr = 1, and σ = 100 (S/m). Determine the average power dissipated
(lost) per unit cross-sectional area in a 2-mm penetration of the conducting medium.

Solution: For convenience, let us choose Ei to be along x̂ and the incident direction
to be +ẑ. With

k1 =
ω
c

=
2π×5×106

3×108 =
π
30

(rad/m),
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we have

Ei = x̂10cos
(

π×107t − π
30

z
)

(V/m),

η1 = η0 = 377 Ω.

From Table 7-1,

ε′′

ε′
=

σ
ωεrε0

=
100×36π

π×107 ×4×10−9 = 9×104,

which makes the material a good conductor, for which

α2 =
√

π f µσ =
√

π×5×106 ×4π×10−7 ×100 = 44.43 (Np/m),

β2 = 44.43 (rad/m),

ηc2 = (1+ j)
α2

σ
= (1+ j)

44.43
100

= 0.44(1+ j) Ω.

According to the expression for Sav2 given in the answer to Exercise 8.3,

Sav2 = ẑ |τ|2 |E
i
0|2
2

e−2α2z
Re

(
1

η∗
c2

)
.

The power lost is equal to the difference between Sav2 at z = 0 and Sav2 at z = 2 mm.
Thus,

P′ = power lost per unit cross-sectional area

= Sav2(0)−Sav2(z = 2 mm)

= |τ|2 |E
i
0|2
2

Re

(
1

η∗
c2

)
[1− e−2α2z1 ]

where z1 = 2 mm.

τ = 1+Γ

= 1+
η2 −η1

η2 +η1
= 1+

0.44(1+ j)−377
0.44(1+ j)+377

≈ 0.0023(1+ j) = 3.3×10−3e j45◦ .

Re

(
1

η∗
c2

)
= Re

(
1

0.44(1+ j)∗

)

= Re

(
1

0.44(1− j)

)
= Re

(
1+ j

0.44×2

)
=

1
0.88

= 1.14,

P′ = (3.3×10−3)2 102

2
×1.14 [1− e−2×44.43×2×10−3

] = 1.01×10−4 (W/m2).
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Problem 8.16 A 0.5-MHz antenna carried by an airplane flying over the ocean
surface generates a wave that approaches the water surface in the form of a normally
incident plane wave with an electric-field amplitude of 3,000 (V/m). Sea water is
characterized by εr = 72, µr = 1, and σ = 4 (S/m). The plane is trying to communicate
a message to a submarine submerged at a depth d below the water surface. If the
submarine’s receiver requires a minimum signal amplitude of 0.01 (µV/m), what is
the maximum depth d to which successful communication is still possible?

Solution: For sea water at 0.5 MHz,

ε′′

ε′
=

σ
ωε

=
4×36π

2π×0.5×106 ×72×10−9 = 2000.

Hence, sea water is a good conductor, in which case we use the following expressions
from Table 7-1:

α2 =
√

π f µσ =
√

π×0.5×106 ×4π×10−7 ×4 = 2.81 (Np/m),

β2 = 2.81 (rad/m),

ηc2 = (1+ j)
α2

σ
= (1+ j)

2.81
4

= 0.7(1+ j) Ω,

Γ =
η2 −η1

η2 +η1
=

0.7(1+ j)−377
0.7(1+ j)+377

= (−0.9963+ j3.7×10−3),

τ = 1+Γ = 5.24×10−3e j44.89◦ ,

|E t| = |τE i
0e−α2d|.

We need to find the depth z at which |E t| = 0.01 µV/m = 10−8 V/m.

10−8 = 5.24×10−3 ×3×103e−2.81d ,

e−2.81d = 6.36×10−10,

−2.81d = ln(6.36×10−10) = −21.18,

or
d = 7.54 (m).
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Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics

Problem 8.17 A light ray is incident on a prism at an angle θ as shown in Fig.
8-33 (P8.17). The ray is refracted at the first surface and again at the second surface.
In terms of the apex angle φ of the prism and its index of refraction n, determine
the smallest value of θ for which the ray will emerge from the other side. Find this
minimum θ for n = 4 and φ = 60◦.

θ

θ3

φ

n

A

B

C
θ2

Figure P8.17: Prism of Problem 8.17.

Solution: For the beam to emerge at the second boundary, it is necessary that

θ3 < θc,

where sinθc = 1/n. From the geometry of triangle ABC,

180◦ = φ+(90◦−θ2)+(90◦−θ3),

or θ2 = φ−θ3. At the first boundary, sinθ = nsin θ2. Hence,

sinθmin = nsin(φ−θ3) = nsin

(
φ− sin−1

(
1
n

))
,

or

θmin = sin−1
[

nsin

(
φ− sin−1

(
1
n

))]
.

For n = 4 and φ = 60◦,

θmin = sin−1
[

4sin(60◦− sin−1
(

1
4

)]
= 20.4◦.
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Problem 8.18 For some types of glass, the index of refraction varies with
wavelength. A prism made of a material with

n = 1.71− 4
30

λ0, (λ0 in µm),

where λ0 is the wavelength in vacuum, was used to disperse white light as shown in
Fig. 8-34 (P8.18). The white light is incident at an angle of 50◦, the wavelength λ0 of
red light is 0.7 µm and that of violet light is 0.4 µm. Determine the angular dispersion
in degrees.

50°

60°

Red
Green

Violet

Angular dispersion

A

B

C
θ4θ3

θ2

Figure P8.18: Prism of Problem 8.18.

Solution: For violet,

nv = 1.71− 4
30

×0.4 = 1.66, sinθ2 =
sinθ
nv

=
sin 50◦

1.66
,

or
θ2 = 27.48◦.

From the geometry of triangle ABC,

180◦ = 60◦ +(90◦−θ2)+(90◦−θ3),

or
θ3 = 60◦−θ2 = 60−27.48◦ = 32.52◦,

and
sinθ4 = nv sinθ3 = 1.66sin 32.52◦ = 0.89,

or
θ4 = 63.18◦.
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For red,

nr = 1.71− 4
30

×0.7 = 1.62,

θ2 = sin−1
[

sin50◦

1.62

]
= 28.22◦,

θ3 = 60◦−28.22◦ = 31.78◦,

θ4 = sin−1 [1.62sin 31.78◦] = 58.56◦.

Hence, angular dispersion = 63.18◦−58.56◦ = 4.62◦.

Problem 8.19 The two prisms in Fig. 8-35 (P8.19) are made of glass with n = 1.5.
What fraction of the power density carried by the ray incident upon the top prism
emerges from bottom prism? Neglect multiple internal reflections.

45°

45°

45°

45°

90°

90°

Si

St

65

4

3

21

Figure P8.19: Periscope problem.

Solution: Using η = η0/n, at interfaces 1 and 4,

Γa =
n1 −n2

n1 +n2
=

1−1.5
1+1.5

= −0.2.

At interfaces 3 and 6,
Γb = −Γa = 0.2.
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At interfaces 2 and 5,

θc = sin−1
(

1
n

)
= sin−1

(
1

1.5

)
= 41.81◦.

Hence, total internal reflection takes place at those interfaces. At interfaces 1, 3, 4
and 6, the ratio of power density transmitted to that incident is (1−Γ2). Hence,

St

Si = (1−Γ2)4 = (1− (0.2)2)4 = 0.85.

Problem 8.20 A light ray incident at 45◦ passes through two dielectric materials
with the indices of refraction and thicknesses given in Fig. 8-36 (P8.20). If the ray
strikes the surface of the first dielectric at a height of 2 cm, at what height will it strike
the screen?

45°
2cm

screen

n4 = 1n1 = 1 n3 = 1.3n2 = 1.5

3cm 4cm 5cm

45°

h4

h3

h2

h1

θ2

θ3

θ4

Figure P8.20: Light incident on a screen through a multi-layered dielectric (Problem
8.20).

Solution:

sinθ2 =
n1

n2
sinθ1 =

1
1.5

sin45◦ = 0.47.

Hence,

θ2 = 28.13◦,

h2 = 3 cm× tanθ2 = 3 cm×0.53 = 1.6 cm,

sinθ3 =
n2

n3
sinθ2 =

1.5
1.3

sin28.13◦ = 0.54.

Hence,

θ3 = 32.96◦,
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h3 = 4 cm× tan32.96◦ = 2.6 cm,

sinθ4 =
n3

n4
sinθ3 = 0.707.

Hence,

θ4 = 45◦,

h4 = 5 cm× tan45◦ = 5 cm.

Total height = h1 +h2 +h3 +h4 = (2+1.6+2.6+5) = 11.2 cm.

Problem 8.21 Figure P8.21 depicts a beaker containing a block of glass on the
bottom and water over it. The glass block contains a small air bubble at an unknown
depth below the water surface. When viewed from above at an angle of 60◦, the air
bubble appears at a depth of 6.81 cm. What is the true depth of the air bubble?

60°

10 cm

θ2

da

d2

θ2

θ3

x2

x

x1

dt

Figure P8.21: Apparent position of the air bubble in Problem 8.21.

Solution: Let

da = 6.81 cm = apparent depth,

dt = true depth.

θ2 = sin−1
[

n1

n2
sinθi

]
= sin−1

[
1

1.33
sin 60◦

]
= 40.6◦,
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θ3 = sin−1
[

n1

n3
sinθi

]
= sin−1

[
1

1.6
sin60◦

]
= 32.77◦,

x1 = (10 cm)× tan40.6◦ = 8.58 cm,

x = da cot30◦ = 6.81cot 30◦ = 11.8 cm.

Hence,
x2 = x− x1 = 11.8−8.58 = 3.22 cm,

and
d2 = x2 cot32.77◦ = (3.22 cm)× cot32.77◦ = 5 cm.

Hence, dt = (10+5) = 15 cm.

Problem 8.22 A glass semicylinder with n = 1.5 is positioned such that its flat face
is horizontal, as shown in Fig. 8-38 (P8.22). Its horizontal surface supports a drop of
oil, as shown. When light is directed radially toward the oil, total internal reflection
occurs if θ exceeds 53◦. What is the index of refraction of the oil?

θ

nglass= 1.5

noil

oil drop

Figure P8.22: Oil drop on the flat surface of a glass semicylinder (Problem 8.22).

Solution:

sinθc =
n2

n1
=

noil

1.5
,

noil = 1.5sin 53◦ = 1.2.

Problem 8.23 A penny lies at the bottom of a water fountain at a depth of 30 cm.
Determine the diameter of a piece of paper which, if placed to float on the surface of
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d
x x

30 cm

θc

θc

water surface

Figure P8.23: Light cone bounded by total internal reflection.

the water directly above the penny, would totally obscure the penny from view. Treat
the penny as a point and assume that n = 1.33 for water.

Solution:

θc = sin−1
[

1
1.33

]
= 48.75◦,

d = 2x = 2[(30 cm) tanθc] = (60 cm)× tan48.75◦ = 68.42 cm.

Problem 8.24 Suppose the optical fiber of Example 8-5 is submerged in water (with
n = 1.33) instead of air. Determine θa and fp in that case.

Solution: With n0 = 1.33, nf = 1.52 and nc = 1.49, Eq. (8.40) gives

sinθa =
1
n0

(n2
f −n2

c)
1/2 =

1
1.33

[
(1.52)2 − (1.49)2]1/2

= 0.23,

or
θa = 13.1◦.

The data rate fp given by Eq. (8.45) is not a function of n0, and therefore it remains
unchanged at 4.9 (Mb/s).
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Problem 8.25 Equation (8.45) was derived for the case where the light incident
upon the sending end of the optical fiber extends over the entire acceptance cone
shown in Fig. 8-12(b). Suppose the incident light is constrained to a narrower range
extending between normal incidence and θ′, where θ′ < θa.

(a) Obtain an expression for the maximum data rate fp in terms of θ′.
(b) Evaluate fp for the fiber of Example 8-5 when θ′ = 5◦.

Solution:
(a) For θi = θ′,

sinθ2 =
1
nf

sin θ′,

lmax =
l

cosθ2
=

l√
1− sin2 θ2

=
l√

1−
(

sinθ′
nf

)2
=

lnf√
n2

f − (sinθ′)2
,

tmax =
lmax

up
=

lmaxnf

c
=

ln2
f

c
√

n2
f − (sinθ′)2

,

tmin =
l

up
= l

nf

c
,

τ = ∆t = tmax − tmin = l
nf

c


 nf√

n2
f − (sinθ′)2

−1


 ,

fp =
1
2τ

=
c

2lnf


 nf√

n2
f − (sinθ′)2

−1



−1

(bits/s).

(b) For:

nf = 1.52,

θ′ = 5◦,

l = 1 km,

c = 3×108 m/s,

fp = 59.88 (Mb/s).
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Sections 8-4 and 8-5: Reflection and Transmission at Oblique Incidence

Problem 8.26 A plane wave in air with

Ẽi = ŷ20e− j(3x+4z) (V/m),

is incident upon the planar surface of a dielectric material, with εr = 4, occupying the
half space z ≥ 0. Determine:

(a) the polarization of the incident wave,
(b) the angle of incidence,
(c) the time-domain expressions for the reflected electric and magnetic fields,
(d) the time-domain expressions for the transmitted electric and magnetic fields,

and
(e) the average power density carried by the wave in the dielectric medium.

Solution:
(a) Ẽi = ŷ20e− j(3x+4z) V/m.
Since Ei is along ŷ, which is perpendicular to the plane of incidence, the wave is

perpendicularly polarized.
(b) From Eq. (8.48a), the argument of the exponential is

− jk1(xsin θi + zcosθi) = − j(3x+4z).

Hence,
k1 sinθi = 3, k1 cosθi = 4,

from which we determine that

tanθi =
3
4

or θi = 36.87◦,

and
k1 =

√
32 +42 = 5 (rad/m).

Also,
ω = upk = ck = 3×108 ×5 = 1.5×109 (rad/s).

(c)

η1 = η0 = 377 Ω,

η2 =
η0√εr2

=
η0

2
= 188.5 Ω,

θt = sin−1
[

sinθi√εr2

]
= sin−1

[
sin36.87◦√

4

]
= 17.46◦,
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Γ⊥ =
η2 cos θi −η1 cosθt

η2 cos θi +η1 cosθt
= −0.41,

τ⊥ = 1+Γ⊥ = 0.59.

In accordance with Eq. (8.49a), and using the relation E r
0 = Γ⊥E i

0,

Ẽr = −ŷ8.2e− j(3x−4z),

H̃r = (x̂ cosθi + ẑsinθi)
8.2
η0

e− j(3x−4z),

where we used the fact that θi = θr and the z-direction has been reversed.

Er = Re[Ẽre jωt ] = −ŷ8.2cos(1.5×109t −3x+4z) (V/m),

Hr = (x̂17.4+ ẑ13.06)cos(1.5×109t −3x+4z) (mA/m).

(d) In medium 2,

k2 = k1

√
ε2

ε1
= 5

√
4 = 20 (rad/m),

and

θt = sin−1
[√

ε1

ε2
sinθi

]
= sin−1

[
1
2

sin 36.87◦
]

= 17.46◦

and the exponent of Et and Ht is

− jk2(xsin θt + zcosθt) = − j10(xsin 17.46◦ + zcos17.46◦) = − j(3x+9.54z).

Hence,

Ẽt = ŷ20×0.59e− j(3x+9.54z) ,

H̃t = (−x̂cosθt + ẑsin θt)
20×0.59

η2
e− j(3x+9.54z).

Et = Re[Ẽte jωt ] = ŷ11.8cos(1.5×109t −3x−9.54z) (V/m),

Ht = (−x̂cos17.46◦ + ẑsin17.46◦)
11.8
188.5

cos(1.5×109t −3x−9.54z)

= (−x̂59.72+ ẑ18.78) cos(1.5×109t −3x−9.54z) (mA/m).

(e)

St
av =

|E t
0|2

2η2
=

(11.8)2

2×188.5
= 0.36 (W/m2).
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Problem 8.27 Repeat Problem 8.26 for a wave in air with

H̃i = ŷ2×10−2e− j(8x+6z) (A/m),

incident upon the planar boundary of a dielectric medium (z ≥ 0) with εr = 9.

Solution:
(a) H̃

i
= ŷ2×10−2e− j(8x+6z).

Since Hi is along ŷ, which is perpendicular to the plane of incidence, the wave is
TM polarized, or equivalently, its electric field vector is parallel polarized (parallel to
the plane of incidence).

(b) From Eq. (8.65b), the argument of the exponential is

− jk1(xsin θi + zcosθi) = − j(8x+6z).

Hence,
k1 sinθi = 8, k1 cosθi = 6,

from which we determine

θi = tan−1
(

8
6

)
= 53.13◦,

k1 =
√

62 +82 = 10 (rad/m).

Also,
ω = upk = ck = 3×108 ×10 = 3×109 (rad/s).

(c)

η1 = η0 = 377 Ω,

η2 =
η0√εr2

=
η0

3
= 125.67 Ω,

θt = sin−1
[

sinθi√εr2

]
= sin−1

[
sin53.13◦√

9

]
= 15.47◦,

Γ‖ =
η2 cosθt −η1 cosθi

η2 cosθt +η1 cosθi
= −0.30,

τ‖ = (1+Γ‖)
cosθi

cosθt
= 0.44.

In accordance with Eqs. (8.65a) to (8.65d), E i
0 = 2×10−2η1 and

Ẽi = (x̂cos θi − ẑsinθi)2×10−2η1 e− j(8x+6z) = (x̂4.52− ẑ6.03)e− j(8x+6z).
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Ẽr is similar to Ẽi except for reversal of z-components and multiplication of amplitude
by Γ‖. Hence, with Γ‖ = −0.30,

Er = Re[Ẽ
r
e jωt ] = −(x̂1.36+ ẑ1.81)cos(3×109t −8x+6z) V/m,

Hr = ŷ2×10−2Γ‖ cos(3×109t −8x+6z)

= −ŷ0.6×10−2 cos(3×109t −8x+6z) A/m.

(d) In medium 2,

k2 = k1

√
ε2

ε1
= 10

√
9 = 30 rad/m,

θt = sin−1
[√

ε2

ε1
sinθi

]
= sin−1

[
1
3

sin53.13◦
]

= 15.47◦,

and the exponent of Et and Ht is

− jk2(xsin θt + zcosθt) = − j30(xsin 15.47◦ + zcos15.47◦) = − j(8x+28.91z).

Hence,

Ẽt = (x̂cosθt − ẑsin θt)E
i
0τ‖e− j(8x+28.91z)

= (x̂0.96− ẑ0.27)2×10−2 ×377×0.44e− j(8x+28.91z)

= (x̂3.18− ẑ0.90)e− j(8x+28.91z) ,

H̃t = ŷ
E i

0τ‖
η2

e− j(8x+28.91z)

= ŷ2.64×10−2 e− j(8x+28.91z),

Et = Re{Ẽte jωt}
= (x̂3.18− ẑ0.90)cos(3×109t −8x−28.91z) V/m,

Ht = ŷ2.64×10−2 cos(3×109t −8x−28.91z) A/m.

(e)

St
av =

|E t
0|2

2η2
=

|H t
0|2
2

η2 =
(2.64×10−2)2

2
×125.67 = 44 mW/m2.

Problem 8.28 Natural light is randomly polarized, which means that, on average,
half the light energy is polarized along any given direction (in the plane orthogonal
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to the direction of propagation) and the other half of the energy is polarized along the
direction orthogonal to the first polarization direction. Hence, when treating natural
light incident upon a planar boundary, we can consider half of its energy to be in
the form of parallel-polarized waves and the other half as perpendicularly polarized
waves. Determine the fraction of the incident power reflected by the planar surface
of a piece of glass with n = 1.5 when illuminated by natural light at 70◦.

Solution: Assume the incident power is 1 W. Hence:
Incident power with parallel polarization = 0.5 W,
Incident power with perpendicular polarization = 0.5 W.

ε2/ε1 = (n2/n1)
2 = n2 = 1.52 = 2.25. Equations (8.60) and (8.68) give

Γ⊥ =
cos 70◦−

√
2.25− sin2 70◦

cos 70◦ +
√

2.25− sin2 70◦
= −0.55,

Γ‖ =
−2.25cos 70◦ +

√
2.25− sin2 70◦

2.25cos 70◦ +
√

2.25− sin2 70◦
= 0.21.

Reflected power with parallel polarization = 0.5(Γ‖)
2

= 0.5(0.21)2 = 22 mW,
Reflected power with perpendicular polarization = 0.5(Γ⊥)2

= 0.5(0.55)2 = 151.3 mW.
Total reflected power = 22+151.3 = 173.3 mW, or 17.33%..

Problem 8.29 A parallel polarized plane wave is incident from air onto a dielectric
medium with εr = 9 at the Brewster angle. What is the refraction angle?

θ1 εr1 = 1

εr2 = 9
θ2

Figure P8.29: Geometry of Problem 8.29.

Solution: For nonmagnetic materials, Eq. (8.72) gives

θ1 = θB = tan−1

√
ε2

ε1
= tan−1 3 = 71.57◦.
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But

sin θ2 =
sin θ1√εr2

=
sinθ1

3
=

sin71.57◦

3
= 0.32,

or θ2 = 18.44◦ .

Problem 8.30 A perpendicularly polarized wave in air is obliquely incident upon
a planar glass-air interface at an incidence angle of 30◦. The wave frequency is
600 THz (1 THz = 1012 Hz), which corresponds to green light, and the index of
refraction of the glass is 1.6. If the electric field amplitude of the incident wave is 50
V/m, determine

(a) the reflection and transmission coefficients, and
(b) the instantaneous expressions for E and H in the glass medium.

Solution:
(a) For nonmagnetic materials, (ε2/ε1) = (n2/n1)

2. Using this relation in Eq.
(8.60) gives

Γ⊥ =
cos θi −

√
(n2/n1)2 − sin2 θi

cos θi +
√

(n2/n1)2 − sin2 θi

=
cos30◦−

√
(1.6)2 − sin2 30◦

cos30◦ +
√

(1.6)2 − sin2 30◦
= −0.27,

τ⊥ = 1+Γ⊥ = 1−0.27 = 0.73.

(b) In the glass medium,

sinθt =
sin θi

n2
=

sin 30◦

1.6
= 0.31,

or θt = 18.21◦ .

η2 =

√
µ2

ε2
=

η0

n2
=

120π
1.6

= 75π = 235.62 (Ω),

k2 =
ω
up

=
2π f
c/n

=
2π f n

c
=

2π×600×1012 ×1.6
3×108 = 6.4π×106 rad/m,

E t
0 = τ⊥E i

0 = 0.73×50 = 36.5 V/m.

From Eqs. (8.49c) and (8.49d),

Ẽt
⊥ = ŷE t

0e− jk2(xsinθt+zcosθt),

H̃t
⊥ = (−x̂cos θt + ẑsinθt)

E t
0

η2
e− jk2(xsinθt+zcosθt),
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and the corresponding instantaneous expressions are:

Et
⊥(x,z, t) = ŷ36.5cos(ωt − k2xsin θt − k2zcosθt) (V/m),

Ht
⊥(x,z, t) = (−x̂cosθt − ẑcosθt)0.16cos(ωt − k2xsin θt − k2zcos θt) (A/m),

with ω = 2π×1015 rad/s and k2 = 6.4π×106 rad/m.

Problem 8.31 Show that the reflection coefficient Γ⊥ can be written in the form

Γ⊥ =
sin(θt −θi)

sin(θt +θi)
.

Solution: From Eq. (8.58a),

Γ⊥ =
η2 cos θi −η1 cosθt

η2 cos θi +η1 cosθt
=

(η2/η1)cos θi − cosθt

(η2/η1)cos θi + cosθt
.

Using Snell’s law for refraction given by Eq. (8.31), we have

η2

η1
=

sinθt

sinθi
,

we have

Γ⊥ =
sinθt cos θi − cosθt sinθi

sinθt cos θi + cosθt sinθi
=

sin(θt −θi)

sin(θt +θi)
.

Problem 8.32 Show that for nonmagnetic media, the reflection coefficient Γ‖ can
be written in the form

Γ‖ =
tan(θt −θi)

tan(θt +θi)
.

Solution: From Eq. (8.66a), Γ‖ is given by

Γ‖ =
η2 cos θt −η1 cosθi

η2 cos θt +η1 cosθi
=

(η2/η1)cos θt − cosθi

(η2/η1)cos θt + cosθi
.

For nonmagnetic media, µ1 = µ2 = µ0 and

η2

η1
=

√
ε1

ε2
=

n1

n2
.
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Snell’s law of refraction is
sinθt

sinθi
=

n1

n2
.

Hence,

Γ‖ =

sinθt

sinθi
cos θt − cosθi

sinθt

sinθi
cos θt + cosθi

=
sinθt cosθt − sinθi cos θi

sinθt cosθt + sinθi cos θi
.

To show that the expression for Γ‖ is the same as

Γ‖ =
tan(θt −θi)

tan(θt +θi)
,

we shall proceed with the latter and show that it is equal to the former.

tan(θt −θi)

tan(θt +θi)
=

sin(θt −θi)cos(θt +θi)

cos(θt −θi)sin(θt +θi)
.

Using the identities (from Appendix C):

2sin xcos y = sin(x+ y)+ sin(x− y),

and if we let x = θt −θi and y = θt +θi in the numerator, while letting x = θt +θi and
y = θt −θi in the denominator, then

tan(θt −θi)

tan(θt +θi)
=

sin(2θt)+ sin(−2θi)

sin(2θt)+ sin(2θi)
.

But sin2θ = 2sin θcos θ, and sin(−θ) = −sinθ, hence,

tan(θt −θi)

tan(θt +θi)
=

sinθt cosθt − sinθi cos θi

sinθt cosθt + sinθi cos θi
,

which is the intended result.

Problem 8.33 A parallel polarized beam of light with an electric field amplitude of
10 (V/m) is incident in air on polystyrene with µr = 1 and εr = 2.6. If the incidence
angle at the air–polystyrene planar boundary is 50◦, determine

(a) the reflectivity and transmissivity, and
(b) the power carried by the incident, reflected, and transmitted beams if the spot

on the boundary illuminated by the incident beam is 1 m2 in area.
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Solution:
(a) From Eq. (8.68),

Γ‖ =
−(ε2/ε1)cosθi +

√
(ε2/ε1)− sin2 θi

(ε2/ε1)cos θi +
√

(ε2/ε1)− sin2 θi

=
−2.6cos 50◦ +

√
2.6− sin2 50◦

2.6cos 50◦ +
√

2.6− sin2 50◦
= −0.08,

R‖ = |Γ‖|2 = (0.08)2 = 6.4×10−3,

T‖ = 1−R‖ = 0.9936.

(b)

Pi
‖ =

|E i
‖0|2

2η1
Acosθi =

(10)2

2×120π
× cos50◦ = 85 mW,

Pr
‖ = R‖Pi

‖ = (6.4×10−3)×0.085 = 0.55 mW,

Pt
‖ = T‖Pi

‖ = 0.9936×0.085 = 84.45 mW.

Sections 8-6 to 8-11

Problem 8.34 Derive Eq. (8.89b).

Solution:
We start with Eqs. (8.88a and e),

∂ẽz

∂y
+ jβẽy = − jωµh̃x,

− jβh̃x −
∂h̃z

∂x
= jωεẽy.

To eliminate h̃x, we multiply the top equation by β and the bottom equation by ωµ,
and then we add them together. The result is:

β
∂ẽz

∂y
+ jβ2ẽy −ωµ

∂h̃z

∂x
= jω2µεẽy.
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Multiplying all terms by e− jβz to convert ẽy to Ẽy (and similarly for the other field
components), and then solving for Ẽy leads to

Ẽy =
1

j(β2 −ω2µε)

(
−β

∂Ẽz

∂y
+ωµ

∂H̃z

∂x

)

=
j

k2
c

(
−β

∂Ẽz

∂y
+ωµ

∂H̃z

∂x

)
,

where we used the relation
k2

c = ω2µε−β2.

Problem 8.35 A hollow rectangular waveguide is to be used to transmit signals at
a carrier frequency of 6 GHz. Choose its dimensions so that the cutoff frequency of
the dominant TE mode is lower than the carrier by 25% and that of the next mode is
at least 25% higher than the carrier.

Solution:
For m = 1 and n = 0 (TE10 mode) and up0

= c (hollow guide), Eq. (8.106) reduces
to

f10 =
c

2a
.

Denote the carrier frequency as f0 = 6 GHz. Setting

f10 = 0.75 f0 = 0.75×6 GHz = 4.5 GHz,

we have

a =
c

2 f10
=

3×108

2×4.5×109 = 3.33 cm.

If b is chosen such that a > b > a
2 , the second mode will be TE01, followed by TE20

at f20 = 9 GHz. For TE01,

f01 =
c

2b
.

Setting f01 = 1.25 f0 = 7.5 GHz, we get

b =
c

2 f01
=

3×108

2×7.5×109 = 2 cm.
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Problem 8.36 A TE wave propagating in a dielectric-filled waveguide of unknown
permittivity has dimensions a = 5 cm and b = 3 cm. If the x-component of its electric
field is given by

Ex = −36cos(40πx)sin(100πy)

· sin(2.4π×1010t −52.9πz), (V/m)

determine:
(a) the mode number,
(b) εr of the material in the guide,
(c) the cutoff frequency, and
(d) the expression for Hy.

Solution:
(a) Comparison of the given expression with Eq. (8.110a) reveals that

mπ
a

= 40π, hence m = 2

nπ
b

= 100π, hence n = 3.

Mode is TE23.
(b) From sin(ωt −βz), we deduce that

ω = 2.4π×1010 rad/s, β = 52.9π rad/m.

Using Eq. (8.105) to solve for εr, we have

εr =
c2

ω2

[
β2 +

(mπ
a

)2
+
(nπ

b

)2
]

= 2.25.

(c)

up0
=

c√
εr

=
3×108
√

2.25
= 2×108 m/s.

f23 =
up0

2

√(
2
a

)2

+

(
3
b

)2

= 10.77 GHz.
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(d)

ZTE =
Ex

Hy
= η

/√
1− ( f23/ f )2

=
377√

εr

/√

1−
(

10.77
12

)2

= 569.9 Ω.

Hence,

Hy =
Ex

ZTE

= −0.063cos(40πx)sin(100πy)sin(2.4π×1010t −52.9πz) (A/m).

Problem 8.37 A waveguide filled with a material whose εr = 2.25 has dimensions
a = 2 cm and b = 1.4 cm. If the guide is to transmit 10.5-GHz signals, what possible
modes can be used for the transmission?

Solution:
Application of Eq. (8.106) with up0

= c/
√

εr = 3 × 108/
√

2.25 = 2 × 108 m/s,
gives:

f10 = 5 GHz (TE only)

f01 = 7.14 GHz (TE only)

f11 = 8.72 GHz (TE or TM)

f20 = 10 GHz (TE only)

f21 = 12.28 GHz (TE or TM)

f12 = 15.1 GHz (TE or TM).

Hence, any one of the first four modes can be used to transmit 10.5-GHz signals.

Problem 8.38 For a rectangular waveguide operating in the TE10 mode, obtain
expressions for the surface charge density ρ̃s and surface current density J̃s on each
of the four walls of the guide.

Solution:
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For TE10, the expressions for Ẽ and H̃ are given by Eq. (8.110) with m = 1 and
n = 0,

Ẽx = 0,

Ẽy = − j
ωµπH0

k2
c a

sin
(πx

a

)
e− jβz,

Ẽz = 0,

H̃x = j
βπH0

k2
ca

sin
(πx

a

)
e− jβz,

H̃y = 0,

H̃z = H0 cos
(πx

a

)
e− jβz.

The applicable boundary conditions are given in Table 6-2. At the boundary between
a dielectric (medium 1) and a conductor (medium 2),

ρ̃s = n̂2 · D̃1 = ε1 n̂2 · Ẽ1,

J̃s = n̂2 × H̃1,

where Ẽ1 and H̃1 are the fields inside the guide, ε1 is the permittivity of the material
filling the guide, and n̂2 is the normal to the guide wall, pointing away from the wall
(inwardly). In view of the coordinate system defined for the guide, n̂2 = x̂ for side
wall at x = 0, n̂2 = −x̂ for wall at x = a, etc.

n2
^

n2
^

n2
^

n2
^

y

b

x
a

4

2

3

1

0

(a) At side wall 1 at x = 0, n̂2 = x̂. Hence,

ρs = ε1 x̂ · ŷEy|x=0 = 0

Js = x̂× (x̂H̃x + ẑH̃z)|x=0

= −ŷH̃z|x=0

= −ŷH0e− jβz.
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(b) At side wall 2 at x = a, n̂2 = −x̂. Hence,

ρs = 0

Js = ŷH0e− jβz.

(c) At bottom surface at y = 0, n̂2 = ŷ. Hence,

ρs = ε1 ŷ · ŷEy|y=0

= − j
ωεµπH0

k2
ca

sin
(πx

a

)
e− jβz

J̃s = ŷ× (x̂H̃x + ẑH̃z)

= H0

[
x̂cos

(πx
a

)
− ẑ j

βπ
k2

ca
sin
(πx

a

)]
e− jβz.

(d) At top surface at y−b, n̂2 = −ŷ. Hence,

ρ̃s = j
ωεµπH0

k2
ca

sin
(πx

a

)
e− jβz

J̃s = H0

[
−x̂cos

(πx
a

)
+ ẑ j

βπ
k2

c a
sin
(πx

a

)]
e− jβz.

Problem 8.39 A waveguide, with dimensions a = 1 cm and b = 0.7 cm, is to be
used at 20 GHz. Determine the wave impedance for the dominant mode when

(a) the guide is empty, and
(b) the guide is filled with polyethylene (whose εr = 2.25).

Solution:
For the TE10 mode,

f10 =
up0

2a
=

c
2a
√

εr
.

When empty,

f10 =
3×108

2×10−2 = 15 GHz.

When filled with polyethylene, f10 = 10 GHz.
According to Eq. (8.111),

ZTE =
η√

1− ( f10/ f )2
=

η0√
εr

√
1− ( f10/ f )2

.
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When empty,

ZTE =
377√

1− (15/20)2
= 570 Ω.

When filled,

ZTE =
377√

2.25
√

1− (10/20)2
= 290 Ω.

Problem 8.40 A narrow rectangular pulse superimposed on a carrier with a
frequency of 9.5 GHz was used to excite all possible modes in a hollow guide with
a = 3 cm and b = 2.0 cm. If the guide is 100 m in length, how long will it take each
of the excited modes to arrive at the receiving end?

Solution:
With a = 3 cm, b = 2 cm, and up0

= c = 3× 108 m/s, application of Eq. (8.106)
leads to:

f10 = 5 GHz

f01 = 7.5 GHz

f11 = 9.01 GHz

f20 = 10 GHz

Hence, the pulse with a 9.5-GHz carrier can excite the top three modes. Their group
velocities can be calculated with the help of Eq. (8.114),

ug = c
√

1− ( fmn/ f )2,

which gives:

ug =





0.85c = 2.55×108 m/s, for TE10

0.61c = 1.84×108 m/s, for TE01

0.32c = 0.95×108 m/s, for TE11 and TM11

Travel time associated with these modes is:

T =
d
ug

=
100
ug

=





0.39 µs, for TE10

0.54 µs, for TE01

1.05 µs, for TE11 and TM11.
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Problem 8.41 If the zigzag angle θ′ is 42◦ for the TE10 mode, what would it be for
the TE20 mode?

Solution:
For TE10, the derivation that started with Eq. (8.116) led to

θ′10 = tan−1
(

π
βa

)
, TE10 mode.

Had the derivation been for n = 2 (instead of n = 1), the x-dependence would have
involved a phase factor (2πx/a) (instead of (πx/a)). The sequence of steps would
have led to

θ′20 = tan−1
(

2π
βa

)
, TE20 mode.

Given that θ′
10 = 42◦, it follows that

π
βa

= tan42◦ = 0.90

Hence,
θ′20 = tan−1(2×0.9) = 60.9◦.

Problem 8.42 Measurement of the TE101 frequency response of an air-filled cubic
cavity revealed that its Q is 4802. If its volume is 64 mm3, what material are its sides
made of?

Solution:
According to Eq. (8.121), the TE101 resonant frequency of a cubic cavity is given

by

f101 =
3×108
√

2a
=

3×108
√

2×4×10−3
= 53.0 GHz.

Its Q is given by

Q =
a

3δs
= 4802,

which gives δs = 2.78×10−7 m. Applying

δs =
1√

π f101µ0σc
,

and solving for σc leads to
σc ' 6.2×107 S/m.
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According to Appendix B, the material is silver.

Problem 8.43 A hollow cavity made of aluminum has dimensions a = 4 cm and
d = 3 cm. Calculate Q of the TE101 mode for

(a) b = 2 cm, and
(b) b = 3 cm.

Solution:
For the TE101 mode, f101 is independent of b,

f101 =
c
2

√(
1
a

)2

+

(
1
d

)2

=
3×108

2

√(
1

4×10−2

)2

+

(
1

3×10−2

)2

= 6.25 GHz.

For aluminum with σc = 3.5×107 S/m (Appendix B),

δs =
1√

π f101µ0σc
= 1.08×10−6 m.

(a) For a = 4 cm, b = 2 cm and d = 3 cm,

Q =
1
δs

abd(a2 +d2)

[a3(d +2b)+d3(a+2b)]

= 8367.

(b) For a = 4 cm, b = 3 cm, and d = 3 cm,

Q = 9850.

Problem 8.44 A 50-MHz right-hand circularly polarized plane wave with an
electric field modulus of 30 V/m is normally incident in air upon a dielectric medium
with εr = 9 and occupying the region defined by z ≥ 0.

(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximum at z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.
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(c) Write expressions for the electric field phasors of the reflected wave, the
transmitted wave, and the total field in the region z ≤ 0.

(d) Determine the percentages of the incident average power reflected by the
boundary and transmitted into the second medium.

Solution:
(a)

k1 =
ω
c

=
2π×50×106

3×108 =
π
3

rad/m,

k2 =
ω
c
√

εr2 =
π
3

√
9 = π rad/m.

From (7.57), RHC wave traveling in +z direction:

Ẽ
i
= a0(x̂ + ŷe− jπ/2)e− jk1z = a0(x̂− jŷ)e− jk1z

Ei(z, t) = Re

[
Ẽ

i
e jωt
]

= Re

[
a0(x̂e j(ωt−k1z) + ŷe j(ωt−k1z−π/2))

]

= x̂a0 cos(ωt − k1z)+ ŷa0 cos(ωt − k1z−π/2)

= x̂a0 cos(ωt − k1z)+ ŷa0 sin(ωt − k1z)

|Ei| =
[
a2

0 cos2(ωt − k1z)+a2
0 sin2(ωt − k1z)

]1/2
= a0 = 30 V/m.

Hence,

Ẽ
i
= 30(x0 − jy0)e

− jπz/3 (V/m).

(b)

η1 = η0 = 120π (Ω), η2 =
η0√εr2

=
120π√

9
= 40π (Ω).

Γ =
η2 −η1

η2 +η1
=

40π−120π
40π+120π

= −0.5

τ = 1+Γ = 1−0.5 = 0.5.
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(c)

Ẽ
r
= Γa0(x̂− jŷ)e jk1z

= −0.5×30(x̂− jŷ)e jk1z

= −15(x̂− jŷ)e jπz/3 (V/m).

Ẽ
t
= τa0(x̂− jŷ)e− jk2z

= 15(x̂− jŷ)e− jπz (V/m).

Ẽ1 = Ẽ
i
+ Ẽ

r

= 30(x̂− jŷ)e− jπz/3 −15(x̂− jŷ)e jπz/3

= 15(x̂− jŷ)[2e− jπz/3 − e jπz/3] (V/m).

(d)

% of reflected power = 100×|Γ|2 = 100× (0.5)2 = 25%

% of transmitted power = 100|τ|2 η1

η2
= 100× (0.5)2 × 120π

40π
= 75%.

Problem 8.45 Consider a flat 5-mm-thick slab of glass with εr = 2.56.
(a) If a beam of green light (λ0 = 0.52 µm) is normally incident upon one of the

sides of the slab, what percentage of the incident power is reflected back by the
glass?

(b) To eliminate reflections, it is desired to add a thin layer of antireflection coating
material on each side of the glass. If you are at liberty to specify the thickness
of the antireflection material as well as its relative permittivity, what would
these specifications be?

Solution:
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ZL = η0Z2 = ηg

A

Z1 = η0

5 mm

AirGlass

εr = 2.56Green Light

Air

5 mm

Zi

(a) Representing the wave propagation process by an equivalent transmission line
model, the input impedance at the left-hand side of the air-glass interface is (from
2.63):

Zi = Z0

(
ZL + jZ0 tanβl
Z0 + jZL tanβl

)

For the glass,

Z0 = ηg =
η0√

εr
=

η0√
2.56

=
η0

1.6

ZL = η0

βl =
2π
λ

l =
2π
λ0

√
εr l =

2π
0.52×10−6 ×

√
2.56×5×10−3 = 30769.23π.

Subtracting the maximum possible multiples of 2π, namely 30768π, leaves a
remainder of

βl = 1.23π rad.

Hence,

Zi =
η0

1.6

(
η0 + j(η0/1.6) tan 1.23π
(η0/1.6)+ jη0 tan1.23π

)

=

(
1.6+ j tan1.23π

1+ j1.6tan 1.23π

)
120π
1.6

=

(
1.6+ j0.882

1+ j1.41

)
120π
1.6

= 249∠−25.8◦ = (224.2− j108.4) Ω.
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With Zi now representing the input impedance of the glass, the reflection coefficient
at point A is:

Γ =
Zi −η0

Zi +η0

=
224.2− j108.4−120π
224.2− j108.4+120π

=
187.34∠−144.6◦

610.89∠−10.2◦
= 0.3067∠−154.8◦ .

% of reflected power = |Γ|2 ×100 = 9.4%.
(b) To avoid reflections, we can add a quarter-wave transformer on each side of the

glass.

AirGlass
εr = 2.56

Air

5 mmd d

Antireflection 

coating

Antireflection 

coating

Antireflection 

coating

This requires that d be:

d =
λ
4

+2nλ, n = 0,1,2, . . .

where λ is the wavelength in that material; i.e., λ = λ0/
√

εrc, where εrc is the relative
permittivity of the coating material. It is also required that ηc of the coating material
be:

η2
c = η0ηg.

Thus
η2

0

εrc
= η0

η0√
εr

,

or
εrc =

√
εr =

√
2.56 = 1.6.

Hence,

λ =
λ0√
εrc

=
0.52 µm√

1.6
= 0.411 µm,

d =
λ
4

+2nλ

= (0.103+0.822n) (µm), n = 0,1,2, . . .
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Problem 8.46 A parallel-polarized plane wave is incident from air at an angle
θi = 30◦ onto a pair of dielectric layers as shown in the figure.

(a) Determine the angles of transmission θ2, θ3, and θ4.
(b) Determine the lateral distance d.

d

5 cm

5 cm

θi

θ2

θ4

θ3

Air

Air

µr = 1

εr = 2.25

µr = 1

εr = 6.25

Solution:
(a) Application of Snell’s law of refraction given by (8.31) leads to:

sin θ2 = sin θ1

√
εr1

εr2
= sin30◦

√
1

6.25
= 0.2

θ2 = 11.54◦.

Similarly,

sinθ3 = sinθ2

√
εr2

εr3
= sin11.54◦

√
6.25
2.25

= 0.33

θ3 = 19.48◦.

And,

sin θ4 = sinθ3

√
εr3

εr4
= sin 19.48◦

√
2.25

1
= 0.5

θ4 = 30◦.

As expected, the exit ray back into air will be at the same angle as θi.
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(b)

d = (5 cm) tanθ2 +(5 cm) tan θ3

= 5tan 11.54◦ +5tan19.48◦ = 2.79 cm.

Problem 8.47 A plane wave in air with

Ẽ
i
= (x̂2− ŷ4− ẑ6)e− j(2x+3z) (V/m)

is incident upon the planar surface of a dielectric material, with εr = 2.25, occupying
the half-space z ≥ 0. Determine

(a) The incidence angle θi.
(b) The frequency of the wave.
(c) The field Ẽ

r
of the reflected wave.

(d) The field Ẽ
t

of the wave transmitted into the dielectric medium.
(e) The average power density carried by the wave into the dielectric medium.

Solution:

x

z
θi

θ2

(a) From the exponential of the given expression, it is clear that the wave direction
of travel is in the x–z plane. By comparison with the expressions in (8.48a) for
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perpendicular polarization or (8.65a) for parallel polarization, both of which have
the same phase factor, we conclude that:

k1 sinθi = 2,

k1 cosθi = 3.

Hence,

k1 =
√

22 +32 = 3.6 (rad/m)

θi = tan−1(2/3) = 33.7◦.

Also,

k2 = k1
√

εr2 = 3.6
√

2.25 = 5.4 (rad/m)

θ2 = sin−1

[
sinθi

√
1

2.25

]
= 21.7◦.

(b)

k1 =
2π f

c

f =
k1c
2π

=
3.6×3×108

2π
= 172 MHz.

(c) In order to determine the electric field of the reflected wave, we first have to
determine the polarization of the wave. The vector argument in the given expression

for Ẽ
i

indicates that the incident wave is a mixture of parallel and perpendicular
polarization components. Perpendicular polarization has a ŷ-component only (see
8.46a), whereas parallel polarization has only x̂ and ẑ components (see 8.65a). Hence,
we shall decompose the incident wave accordingly:

Ẽ
i
= Ẽ

i
⊥ + Ẽ

i
‖

with

Ẽ
i
⊥ = −ŷ4e− j(2x+3z) (V/m)

Ẽ
i
‖ = (x̂2− ẑ6)e− j(2x+3z) (V/m)

From the above expressions, we deduce:

E i
⊥0 = −4 V/m

E i
‖0 =

√
22 +62 = 6.32 V/m.
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Next, we calculate Γ and τ for each of the two polarizations:

Γ⊥ =
cos θi −

√
(ε2/ε1)− sin2 θi

cos θi +
√

(ε2/ε1)− sin2 θi

Using θi = 33.7◦ and ε2/ε1 = 2.25/1 = 2.25 leads to:

Γ⊥ = −0.25

τ⊥ = 1+Γ⊥ = 0.75.

Similarly,

Γ⊥ =
−(ε2/ε1)cos θi +

√
(ε2/ε1)− sin2 θi

(ε2/ε1)cos θi +
√

(ε2/ε1)− sin2 θi

= −0.15,

τ‖ = (1+Γ‖)
cos θi

cos θt
= (1−0.15)

cos 33.7◦

cos 21.7◦
= 0.76.

The electric fields of the reflected and transmitted waves for the two polarizations are
given by (8.49a), (8.49c), (8.65c), and (8.65e):

Ẽ
r
⊥ = ŷE r

⊥0e− jk1(xsinθr−zcosθr)

Ẽ
t
⊥ = ŷE t

⊥0e− jk2(xsinθt+zcosθt)

Ẽ
r
‖ = (x̂cosθr + ẑsinθr)E

r
‖0e− jk1(xsinθr−zcosθr)

Ẽ
t
‖ = (x̂cosθt − ẑsinθt)E

t
‖0e− jk2(xsinθt+zcosθt)

Based on our earlier calculations:

θr = θi = 33.7◦

θt = 21.7◦

k1 = 3.6 rad/m, k2 = 5.4 rad/m,

E r
⊥0 = Γ⊥E i

⊥0 = (−0.25)× (−4) = 1 V/m.

E t
⊥0 = τ⊥E i

⊥0 = 0.75× (−4) = −3 V/m.

E r
‖0 = Γ‖E i

‖0 = (−0.15)×6.32 = −0.95 V/m.

E t
‖0 = τ‖E i

‖0 = 0.76×6.32 = 4.8 V/m.

Using the above values, we have:

Ẽ
r
= Ẽ

r
⊥ + Ẽ

r
‖

= (−x̂0.79+ ŷ− ẑ0.53)e− j(2x−3z) (V/m).
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(d)

Ẽ
t
= Ẽ

t
⊥ + Ẽ

t
‖

= (x̂4.46− ŷ3− ẑ1.78)e− j(2x+5z) (V/m).

(e)

St =
|E t

0|2
2η2

|E t
0|2 = (4.46)2 +32 +(1.78)2 = 32.06

η2 =
η0√εr2

=
377
1.5

= 251.3 Ω

St =
32.06

2×251.3
= 63.8 (mW/m2).




