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Chapter 8: Reflection, Transmission, and Waveguides

Lessons #50 and 51
Chapter — Section: 8-1
Topics: Normal incidence

Highlights:

e Analogy to transmission line
e Reflection and transmission coefficient
Special Illustrations:

e Example 8-1
e CD-ROM Modules 8.1-8.5
¢ CD-ROM Demos 8.2

Demo 8.2: Medium-contrast Interface

Consider a 6-GHz plane wave in air incident upon the planar surface of a
lossless dielectric medium with g, = 9.
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Lesson #52
Chapter — Section: 8-2
Topics: Snell’s laws

Highlights:

e Reflection and refraction
e Index of refraction

Special Illustrations:

e Example 8-4
e Technology Brief on “Lasers” (CD-ROM)

Lasers

Lasers are used in CD and DVD players, bar-code readers, eye surgery and multitudes of other
systems and applications. A laser—acronym for light amplification by stimulated emission of
radiation—is a source of monochromatic (single wavelength), coherent (uniform wavefront),
narrow-beam light, in contrast with other sources of light (such as the sun or a light bulb) which
usually encompass waves of many different wavelengths with random phase (incoherent). A laser
source generating microwaves is called a maser. The first maser was built in 1953 by Charles
Townes and the first laser was constructed in 1960 by Theodore Maiman.
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Lesson #53
Chapter — Section: 8-3
Topics: Fiber optics

Highlights:

e Structure of an optical fiber
e Dispersion

Special Illustrations:

e Example 8-5
e Technology Brief on “Bar-Code Reader” (CD-ROM)

Bar Code Readers

A bar code consists of a sequence of parallel bars of certain widths, usually printed in black
against a white background, configured to represent a particular binary code of information about
a product and its manufacturer. Laser scanners can read the code and transfer the information to a
computer, a cash register, or a display screen. For both stationary scanners built into checkout
counters at grocery stores and handheld units that can be pointed at the bar-coded object like a
gun, the basic operation of a bar-code reader is the same.

ROTATING MIRROI
(6,000 rpm)

SENSOR

A. Elements of a bar code reader
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Lessons #54 and 55
Chapter — Section: 8-4
Topics: Oblique incidence

Highlights:

e Parallel and perpendicular polarizations
e Brewster angle
e Total internal reflection

Special Illustrations:

e Example 8-6 and 8-7
e CD-ROM Demos 8.4-8.6

Demo 8.5: Moderate-contrast Interface

Consider a plane wave in air incident upon the planar surface of a lossless
dielectric medium with g, = 9.

Press to display the following:

(1) The directions of the incident, reflected and transmitted rays as
a function of the incidence angle.

(2) The magnitude of the reflection coefficient for both parallel and
perpendicular polarizations as a function of the incidence angle.
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Lesson #56
Chapter — Section: 8-5
Topics: Reflectivity and transmissivity

Highlights:

e Power relations

Special Illustrations:

e Example 8-7



Lessons #57-59
Chapter — Section: 8-6 to 8-10
Topics: Waveguides

Highlights:

e TE and TM modes
e Cutoff frequency
e Phase and group velocities

Special Illustrations:
e Examples 8-8, 8-9, and 8-10

Lesson #60
Chapter — Section: 8-11
Topics: Cavity Resonators

Highlights:
e Resonant frequency
e Q factor

e Applications
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Chapter 8

Section 8-1: Reflection and Transmission at Normal Incidence

Problem 8.1 A plane wave in air with an electric field amplitude of 20 V/m is
incident normally upon the surface of a lossless, nonmagnetic medium with €, = 25.
Determine:

(a) the reflection and transmission coefficients,

(b) the standing-wave ratio in the air medium, and

(c) the average power densities of the incident, reflected, and transmitted waves.

Solution:
@ 1201
Ni=no=120m (Q), ﬂzz%:T:Mn (Q)
From Egs. (8.8a) and (8.9),
p_fN2—n1i_ 24n—120m_ —96 _ 067,

CN24N1 24m+120m 144
T=1+I=1-0.67=0.33.

® 1+|F| 140.67
S— = =5.
1—-|F|  1-0.67
(c) According to Egs. (8.19) and (8.20),
i |EdI? 4
Sav = |2r(1)|0 T 2x ggm = 0.52 Wi,
Sh, = |2k, = (0.67) x 0.52 = 0.24 W/m?,
1207

% 0.52 = 0.28 W/mZ2.

g1, = RIS Mg, (0.33)2
& 2n2 N2 & 241

Problem 8.2 A plane wave traveling in medium 1 with g4 = 2.25 is normally
incident upon medium 2 with g, = 4. Both media are made of nonmagnetic, non-
conducting materials. If the electric field of the incident wave is given by

E' = y8cos(61rx 10% — 30mx)  (V/m),

(a) obtain time-domain expressions for the electric and magnetic fields in each of
the two media, and
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(b) determine the average power densities of the incident, reflected and transmitted

waves.
Solution:
@
E' = §y8cos(6Tx 10°% —30mx)  (V/m),
No No Nno 377
= = =12 2" —251330Q,
M= e T V25 15 15
No no 377
2= e VA 2
. N2—nN1 . 1/2—1/1.5 __0‘143’

T n2+ny 1/24+1/15
T=1+I=1-0.143 =0.857,
E'=TE = —1.14ycos(6mx 10% +30mx)  (V/m).

Note that the coefficient of x is positive, denoting the fact that E" belongs to a wave
traveling in —x-direction.

E; =E'+E" = §[8cos(6x 10% — 30mx) — 1.14cos (611 x 10°% 4 30mx)]  (A/m),

H = 2ni cos(61tx 10% — 30Tx) = 231.83cos(671x 10% — 30TX)  (MA/m),
1

1.14
H = in— cos(61x 10% + 30Tx) = 24.54cos(6Tx 10% +30mx)  (MA/m),
1

Hi=H'+H'
— 2[31.83¢0s(67Tx 10°% — 30TX) + 4.54 cos(6T1x 10% 4 30TX)]  (MA/m).

Since k; = w,/p€1 and ky = w,/pEy,

kz_,/ kl \/22 30mt=40rmt  (rad/m),

—E'= y8T cos(61Tx 10% — 40Tx) = ¥6.86cos(6T1x 10% — 401X)  (V/m),

Hy=H!'= 2ﬁ—Tcos(6nx 10% — 401X) = 236.38cos(61x 10% — 40mx)  (MA/m).
2
(b)
. 8 64
S =X o = 5 25133
S, = —|I'?S, = —%(0.143)2 x 0.127 = —%2.6 (MW/m3),

=%127.3 (MW/m?),
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B
S = 2n2
. »(8)2 _(0.86)%64 )
_ _ — %1247 (MW/m?).
o, “2x1885 (mW/m=)

Within calculation error, S, + S, = S,

Problem 8.3 A plane wave traveling in a medium with &, = 9 is normally incident
upon a second medium with €., = 4. Both media are made of nonmagnetic, non-
conducting materials. If the magnetic field of the incident plane wave is given by

H' = 22cos(2mx 10% —ky) (A/m),

(a) obtain time domain expressions for the electric and magnetic fields in each of
the two media, and
(b) determine the average power densities of the incident, reflected and transmitted

waves.
Solution:
(@) In medium 1,
c 3 x 108
U — — —=1x10% (m/s),
p /—srl \/g ( )
w 2mx10°
1= T Ix108 2om (rad/m),
H' = 22cos(2mx 10% — 20my)  (A/m),
Nno 377
= =—=12567Q
N1 Ve 3 .
Nno 377
= =—=1885Q
N2 Ve 5 )

E' = —%2n;cos(2mx 10% — 20my)
= —%251.34c0s(2mx 10% — 20my)  (V/m),

r_N2—N1_ 188512567 _
Nn2+n1 188.5+125.67
1=14T=12,
E" = —%251.34 x 0.2cos(21x 10% + 20my)
— —%50.27 cos(2mx 10% +20my)  (V/m),

0.2,
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50.27

N1
= —20.4cos(21x 10% +-20My)  (A/m),

Hf =2

cos (27 x 10°% + 20my)

E;=E +E'
— —%[25.134cos (21 10% — 20my) + 50.27 cos (21 x 10% + 20my)]  (V/m),
Hy = H'+H" = 2[2cos(2mx 10°% — 20my) — 0.4 cos(2m x 10% + 20Ty)]  (A/m).

&, /4 _40m
kz_,/slkl_\/;xmn_ 3 (rad/m),

) 40
E, — E' = —251.347c0s <2T[>< 10% — TTW)

In medium 2,

= —%301.61cos <2T[>< 10% — 40—“y> (V/m),

3
Hy = Ht = 239162 o <2T[>< 10% — —4O“y>
N2 3
— 21.6c05 <2T[>< 10% — 4OTHV> (A/m).

(b)

o |Eo* . (251.34)2 )
=9 o ~ Vo x1m e —=9251.34 (W/m?),

S, = —¥||?(251.34) = §10.05 (W/m?),
S, =9(251.34— 10.05) = §241.29 (W/m2).

Sa

Problem 8.4 A 200-MHz left-hand circularly polarized plane wave with an electric
field modulus of 5 V/m is normally incident in air upon a dielectric medium with
€ = 4 and occupying the region defined by z > 0.
(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximumatz=0and t =0.
(b) Calculate the reflection and transmission coefficients.
(c) Write expressions for the electric field phasors of the reflected wave, the
transmitted wave, and the total field in the region z < 0.
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(d) Determine the percentages of the incident average power reflected by the

boundary and transmitted into the second medium.

= 88.89%.

Solution:
(a
w 2mx2x10%8  4m
k = = —
175 30 73 rad/m,
Up,
LHC wave:
E' = ag(X+9el?)e 1 = ag( + j§)e 1,
E'(z,t) = Xapcos(wt — kz) — Jagsin(wxt — kz),
E'| = [a3cos?(at — kz) 4 a3sin?(wt )}1/2—a0 5 (V/m).
Hence, - _
E' =5(%+ j9)e 1423  (v/m).
®) No _ No
ni=no=120m (Q), n2 N, 60Tt (Q)
Equations (8.8a) and (8.9) give
Nn2—n1 60m—120m —60 1
No+n: 60m+i20m 180 3’ "
(©
= 5T (R + 96 = 2 (%4 9)el (vim),
~ i 10 . ..
E'=51(X+ j9)e1e* = §O(x+ j§)e 183 (vim),
E;=E +E =5(X+jy) [ei‘”'z/?’ - %ej‘”‘z/?’] (V/m).
(d)
, 100
% of reflected power = 100 x |['|= = 5 = 11.11%,
2
% of transmitted power = 100 x ]T|2m =100 x (%) 16200T[
2
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Problem 8.5 Repeat Problem 8.4 after replacing the dielectric medium with a poor
conductor characterized by &, =2.25, g, =1, and o = 10~ S/m.

Solution:
(a) Medium 1:

W 2mMx2x10®  4m

=Ng=12 Q ki=—=—>7—F— = — .
N1=nNo o (Q), 1= 3% 108 3 (rad/m)
Medium 2: 4
02 _ 107" x 36m _4x103
Wey  2Tmx 2x108x2.25 x 109
Hence, medium 2 is a low-loss dielectric. From Table 7-1,
_ % [i
g2 = 2 %)
—4
_02 120112 o2 1201 _ 10 " 120n: 126 %102 (NP/m),
2 /&, 2 +/2.25 2 15
W,/
B2 = wy/h2€2 = # =21 (rad/m),
P2 jO2 1201 . _3 1201
=, /= (1+—= ) = 1+ j2x107°) ~ —— =180 Q).
N2 sz<+2we2> \/q(ﬂx )= 75 m (Q)

LHC wave:

E'=ao(X+ jye 17,
[El|=ao=5 (V/m),

E' =5(X+ j9)e 19%/3  (Vim).
(b) According to Egs. (8.8a) and (8.9),

poNe—n_ 80— 120

_ — 02 —14+T7=1-02=08.
nain.  somrizom 0 TTLF 0208

©
E =5 (X + j9)el? = — (R + j9)el¥™®3  (v/m),
E = 5T(R + j§)e %% P2 = 4(% + j§)e 12410 % 2% (v/m),
E;=E +E =5(%+ jy)[e 143 —0.214%/3]  (vim).
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(d)

% of reflected power = 100|I"|2 = 100(0.2)? = 4%,

% of transmitted power = 100|T|2% —100(0.8)2 x %T — 96%.
2

Problem 8.6 A 50-MHz plane wave with electric field amplitude of 50 V/m is
normally incident in air onto a semi-infinite, perfect dielectric medium with g, = 36.
Determine (a) I, (b) the average power densities of the incident and reflected waves,
and (c) the distance in the air medium from the boundary to the nearest minimum of
the electric field intensity, |E|.

Solution:
(@
H2 120t 120

=nNo=12 Q =,/== =——=2 Q
Ni=no=120m (Q), n & Ve, 5 o (Q),
_N2—ni_ 20m—120m
= N2+N1 20T+ 120m 0-7L.
Hence, |I'| = 0.71 and 6,, = 180°.
(b)
. |EQl® _ (50)2 2
Sav = Ny 2><12On_3'32 (W/m9),

Sty = T%S,, = (0.71)*x3.32 = 1.67 (W/m?).

() In medium 1 (air),

c 3x108
M=t =g qe 8M
From Egs. (8.16) and (8.17),
Imax_4—rr_ = =15m,

Imin = Imax — % =1.5—1.5=0m (at the boundary).

Problem 8.7 What is the maximum amplitude of the total electric field in the air
medium of Problem 8.6, and at what nearest distance from the boundary does it
occur?
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Solution: From Problem 8.6, = —0.71and A =6 m.
E1|max = (1+|[)E) = (1+0.71) x 50 = 85.5 V/m,

Problem 8.8 Repeat Problem 8.6 after replacing the dielectric medium with a
conductor with &, =1, Wy =1, and 0 = 2.78 x 1073 S/m.

Solution:
(a) Medium 1:
c 3x108
N1 =no=120m=377 (Q), Al_T_W_ﬁm
Medium 2:

we;  2mMx5x107x10°9
Hence, Medium 2 is a quasi-conductor. From Eq. (7.70),

-1/2 -1/2
_ e & _ _ 02
N2 = (1 18,2 =120m| 1 10082

€2
=120m(1— j1)"Y/?
= 120m(v/2) Y225 = (202.88+ j121.31) (Q).

02 278x 103 x 3671

N2—n1  (292.88+ j121.31) — 377 _
= = . — 009+ j0.12 = 0.22./1145" .
N2+ni  (292.88+ j121.31) + 377 +l

(b)

i IE§2 502 2
b= g = ot =32 (Wimd),

ISL,| = |28k, = (0.22)%(3.32) =0.16  (W/m?).

() In medium 1 (air),
c_3x 108

f = 5x107
For 6, = 114.5° = 2 rad, Egs. (8.16) and (8.17) give
O O _20) g,

[
M A 2

A=
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A 6
Iminzlmax—jl23—123—1.5:1.5m.

Problem 89 The three regions shown in Fig. 8-32 (P8.9) contain perfect
dielectrics. For a wave in medium 1 incident normally upon the boundary at z = —d,
what combination of €, and d produce no reflection? Express your answers in terms
of &, &, and the oscillation frequency of the wave, f.

[+——d——]
Medium 1 Medium 3
—_—
€r, e

Figure P8.9: Three dielectric regions.

Solution: By analogy with the transmission-line case, there will be no reflection at
z = —d if medium 2 acts as a quarter-wave transformer, which requires that

=7

and
N2 =+/N1N3.

The second condition may be rewritten as

1/2
No No No
= or &, =+¢&,&
8['2 \/q \/% ’ Iy ricrz»

AN C o

)\ - = = ,
? €r, f\/% f(£r18f3)1/4

n
and c

d=——.
41 (gr,8,) V4



CHAPTER 8 365

Problem 8.10 For the configuration shown in Fig. 8-32 (P8.9), use transmission-
line equations (or the Smith chart) to calculate the input impedance at z = —d for
&, =1, &,=09, &,=4, d=1.2m, and f =50 MHz. Also determine the fraction
of the incident average power density reflected by the structure. Assume all media
are lossless and nonmagnetic.

Solution: In medium 2,

8
N 3x10°

A: = = =
Ve, fy&, 5x107x3

Hence,

B2 = i_n = Ttrad/m, Bod = 1.21trad.
2

At z = —d, the input impedance of a transmission line with load impedance Z is
given by Eqg. (2.63) as

Z + jZotanBod
Zin(—d) = Zo (M)

Zo+ jZ, tanBod

In the present case, Zo = N2 = No/\/&, = No/3 and Z = N3 = No//&; = No/2,
where ng = 12011 (Q). Hence,

N2+ jnatanPzd / 3

+ jnatanBod 1+jd)tanl2n
Zin(—d) :r]z(w) _ Mo <2 J(f)
2

) =No(0.35— j0.14).

Atz = —d,

Z|n_Zl n0(0.35_ j0.14)_r]0 —i162.14°
r— - ] — 0.49¢ 116214,
Zin+Z1 no(0.35—j0.14)+no

Fraction of incident power reflected by the structure is |I'|? = |0.49|? = 0.24.

Problem 8.11 Repeat Problem 8.10 after interchanging €, and €.

Solution: In medium 2,

8
h_ Mo _ 3x10°

VEn  fvE, 5x107x3
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Hence,

B2 = i_n = 1rrad/m, Bod = 1.21trad.
2

Atz = —d, the input impedance of a transmission line with impedance Z is given as
Eq. (2.63),
_ B Z| + jZptanBd
Zin(—d) =Zo (Zo+ jZ tanp2d )
In the present case, Zo = N2 = No/ /&, = No/3, ZL = N3 = No//&, = No, Where
No = 1201 (Q). Hence,

N3+ jnztanl1.2m
N2+ jnatanl.2m

=2
_No <1+(j/3)tan1.2n>
3

Zin(—d)

(1/3)+ jtanl.2m
1+ (j/3)tanl.2m
1+ j3tanl.2m

=

0 > — (0.266 — j0.337)N = 0.431/=5L7".

Atz = —d,
Zin—Zl . 0.43/=517 —%

[ = =
Zin+Z1 043,57 41

= 0.49/-101.1°

Fraction of incident power reflected by structure is |I"|? = 0.24.

Problem 8.12 Orange light of wavelength 0.61 um in air enters a block of glass
with g = 1.44. What color would it appear to a sensor embedded in the glass? The
wavelength ranges of colors are violet (0.39 to 0.45 um), blue (0.45 to 0.49 pm),
green (0.49 to 0.58 um), yellow (0.58 to 0.60 um), orange (0.60 to 0.62 um), and red
(0.62 to 0.78 pm).

Solution: In the glass,

_ 08 s508um.

A=
V1.44

Bl
L\‘)O

The light would appear green.

Problem 8.13 A plane wave of unknown frequency is normally incident in air upon
the surface of a perfect conductor. Using an electric-field meter, it was determined
that the total electric field in the air medium is always zero when measured at a
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distance of 2 m from the conductor surface. Moreover, no such nulls were observed
at distances closer to the conductor. What is the frequency of the incident wave?

Solution: The electric field of the standing wave is zero at the conductor surface,
and the standing wave pattern repeats itself every A /2. Hence,

A:2m, orA=4m,
2
in which case o
f:;:3x410 — 75x107 = 75 MHz.

Problem 8.14 Consider a thin film of soap in air under illumination by yellow light
with A = 0.6 pm in vacuum. If the film is treated as a planar dielectric slab with
€ = 1.72, surrounded on both sides by air, what film thickness would produce strong
reflection of the yellow light at normal incidence?

Solution: The transmission line analogue of the soap-bubble wave problem is shown
in Fig. P8.14(b) where the load Z, is equal to no, the impedance of the air medium
on the other side of the bubble. That is,

377
=377 Q, =——=2875Q.
No N1 JiT2
The normalized load impedance is
7 =10 _131.
N1

For the reflection by the soap bubble to be the largest, Zj, needs to be the most
different from no. This happens when z, is transformed through a length A /4. Hence,

é_ Ao . 0.6 um
4 4 4172

where A is the wavelength of the soap bubble material. Strong reflections will also
occur if the thickness is greater than L by integer multiples of nA /2 = (0.23n) pm.
Hence, in general

L=(0.115+0.23n)ypm, n=0,1,2,... .

L= —0.115 pm,

According to Section 2-7.5, transforming a load Z, = 377 Q through a A /4 section
of Zo = 287.5 Q ends up presenting an input impedance of

B z_g _ (2875)?

Zin = Z. 377

=219.25 Q.
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Yellow Light
>
A=0.6 um

-« L >

() Yellow light incident on soap bubble.

No=377Q N 3 A=Ne=sTrQ

(b) Transmission-line equivalent circuit

Figure P8.14. Diagrams for Problem 8.14.

This Z;, is at the input side of the soap bubble. The reflection coefficient at that

interface is
Zin—No  219.25-377

r— = =
Zin+Nno 219.25+ 377
Any other thickness would produce a reflection coeffficient with a smaller magnitude.

—0.27.

Problem 8.15 A 5-MHz plane wave with electric field amplitude of 10 (V/m) is
normally incident in air onto the plane surface of a semi-infinite conducting material
with & =4, u, =1, and o = 100 (S/m). Determine the average power dissipated
(lost) per unit cross-sectional area in a 2-mm penetration of the conducting medium.

Solution: For convenience, let us choose E' to be along X and the incident direction
to be +2. With
w 2mx5x10® m

RS T ')

(rad/m),
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we have
i o 7, Tt
E' = X10cos (T[>< 10°t 30 z) (VIm),
N1=no=377 Q.
From Table 7-1,
g o 100 x 36Tt

== = =9 x 10*
g  wegy Tx 107 x4x10-9 Siadk

which makes the material a good conductor, for which

O = /Tifpo = V/Tix 5 x 108 x 471 10~ 7 x 100 = 44.43 (Np/m),
Bo=44.43 (rad/m),

L a . 44.43 .
Ne, = (L+1) o = (14 ]) g5 =044(1+1) Q.

According to the expression for Sy, given in the answer to Exercise 8.3,

R Ei 2 1
Savz — Z|T|2| O| 8_20(22%2 <_*> )
2 &
The power lost is equal to the difference between Sy, atz=0and Sy, atz=2 mm.
Thus,

P’ = power lost per unit cross-sectional area
= Sav,(0) — Sav,(z =2 mm)
Ei 2
— |.[|2| O| Re <i*> [1_6720(221]
2 r]Cz

where z; = 2 mm.

T=14T

N2—N1 0.44(1+ j)—377 . _3_ i

14 —1 . ~0.0023 (1 + j) = 3.3 x 10~ 3ei45"
N2+N1 0.44(1+ ) +377 (1+1)

1 1
Re| — | =Re| ————
(7)) = (emaryr)
B 1 B 1+ \ 1
=N <0.44(1— j)> =N <0.44>< 2) ~oss

10? _
P'=(3.3x 10—3)2% x 1.14[1 — g~ 2¥443x2x107%) _ 1 01 5 1074 (W/m?).
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Problem 8.16 A 0.5-MHz antenna carried by an airplane flying over the ocean
surface generates a wave that approaches the water surface in the form of a normally
incident plane wave with an electric-field amplitude of 3,000 (V/m). Sea water is
characterized by €, =72, i, =1, and 0 = 4 (S/m). The plane is trying to communicate
a message to a submarine submerged at a depth d below the water surface. If the
submarine’s receiver requires a minimum signal amplitude of 0.01 (uV/m), what is
the maximum depth d to which successful communication is still possible?

Solution: For sea water at 0.5 MHz,

g o 4 x 36T1

g  we 2mx0.5x106x72x10-° 000

Hence, sea water is a good conductor, in which case we use the following expressions
from Table 7-1:

Oy = /TIfHO = V/Ttx 0.5 x 108 x 41tx 107 x 4=2.81 (Np/m),
B> =2.81 (rad/m),
05 281

002:(14'])? :(1+j)T—0-7(1+j) Q,

Me—n1 0.7(1+j)—377
Nz2+n1 0.7(1+j)+377
T=1+T =524 x 10 348"

EY = [tEje %29

(—0.9963 + j3.7 x 1073),

We need to find the depth z at which |E!| = 0.01 pV/m = 108 \V/m.

1078 =5.24 x 1073 x 3 x 10% 2814,
e 2814 =636 x 101,
—2.81d = In(6.36 x 10719) = —21.18,

or
d=754 (m).
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Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics

Problem 8.17 A light ray is incident on a prism at an angle 8 as shown in Fig.
8-33 (P8.17). The ray is refracted at the first surface and again at the second surface.
In terms of the apex angle @ of the prism and its index of refraction n, determine
the smallest value of © for which the ray will emerge from the other side. Find this
minimum 6 for n =4 and @ = 60°.

Figure P8.17: Prism of Problem 8.17.

Solution: For the beam to emerge at the second boundary, it is necessary that
03 < 6,
where sinB; = 1/n. From the geometry of triangle ABC,
180° = @+ (90° — 62) + (90° — B3),

or 8, = @— B3. At the first boundary, sin8 = nsin0,. Hence,

$inBpmin = Nsin(@— 03) = nsin ((p—sinl <%>) ,

i)

Forn=4and @=60°,

or

Bmin = sin! [4sin(60° —sin~t (%)] = 20.4°.
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Problem 8.18 For some types of glass, the index of refraction varies with
wavelength. A prism made of a material with

4 .
n=171- %Ao, (Ao in pm),
where Ag is the wavelength in vacuum, was used to disperse white light as shown in
Fig. 8-34 (P8.18). The white light is incident at an angle of 50°, the wavelength A of
red light is 0.7 um and that of violet light is 0.4 um. Determine the angular dispersion
in degrees.

Figure P8.18: Prism of Problem 8.18.

Solution: For violet,

4 . sin®  sin50°
ny=171- 30~ 0.4 =1.66, sinBy = = 166

or
0, = 27.48°.

From the geometry of triangle ABC,

180° = 60° + (90° — 8) + (90° — B3),

or
03 =60° — 0, = 60 — 27.48° = 32.52°,
and
sinB4 = nysinB3 = 1.66sin32.52° = 0.89,
or

64 = 63.18°.
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4
n= 171 %07 =162,
8, — sin~? [3'1”22 } — 28.22°,

05 = 60° — 28.22° = 31.78°,
0,4 = sin~1[1.62sin 31.78°] = 58.56°.

Hence, angular dispersion = 63.18° — 58.56° = 4.62°.

Problem 8.19 The two prisms in Fig. 8-35 (P8.19) are made of glass with n = 1.5.
What fraction of the power density carried by the ray incident upon the top prism
emerges from bottom prism? Neglect multiple internal reflections.

Figure P8.19: Periscope problem.

Solution: Using n = no/n, at interfaces 1 and 4,

At interfaces 3 and 6,

_hp—np 1-15

= = =-0.2.
& ni+ny 1+15

MN=-Ta=0.2
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At interfaces 2 and 5,

8. =sint <%> =sint <%> =41.81°.

Hence, total internal reflection takes place at those interfaces. At interfaces 1, 3, 4
and 6, the ratio of power density transmitted to that incident is (1 —I'2). Hence,
St

g=0- %)%= (1-(0.2)%)*=0.85.

Problem 8.20 A light ray incident at 45° passes through two dielectric materials
with the indices of refraction and thicknesses given in Fig. 8-36 (P8.20). If the ray
strikes the surface of the first dielectric at a height of 2 cm, at what height will it strike
the screen?

nm=1 =15 n3=13 ng=1 o

/52' hy screen

sz Y
_L \45°

Figure P8.20: Light incident on a screen through a multi-layered dielectric (Problem
8.20).

Solution: 1
. ni . .
0, = —sinB; = —sin45° = 0.47.
sinB, ~ sinB, 15 sin
Hence,
06, =28.13°,
h, =3cm xtanB, =3 cm x 0.53 = 1.6 cm,
. Ny . 1.5 .
== = _—_-sin28.13° = 0.54.
sinB3 n33|n62 1'Ssm 8.13° =0.5
Hence,

03 = 32.96°,
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hs =4 cm x tan32.96° = 2.6 cm,
sinB, = k] sinB3 = 0.707.
Ny
Hence,

04 = 45°,
hgs =5cm x tan45° =5 cm.

Total height =h; +ha+hz+hs=(241.64+2.64+5) =11.2 cm.

Problem 8.21 Figure P8.21 depicts a beaker containing a block of glass on the
bottom and water over it. The glass block contains a small air bubble at an unknown
depth below the water surface. When viewed from above at an angle of 60°, the air
bubble appears at a depth of 6.81 cm. What is the true depth of the air bubble?

5!

dy

A

P

X
g /
7
w
r &
Q.
N
-

Figure P8.21: Apparent position of the air bubble in Problem 8.21.

Solution: Let

da = 6.81 cm = apparent depth,
d; = true depth.

_'*lm'__'fli' ol __ o
0, =sin [nz sme,] =sin [1.33 sin60 ] =40.6°,
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. _q g . T I S o
83 =sin 1[n—;smei] =sin 1[Rsm60 ] =32.77°,

X1 = (10 cm) x tan40.6° = 8.58 cm,
X = dycot30° = 6.81cot30° = 11.8 cm.

Hence,
Xo =X—X; =11.8—-8.58 =3.22 cm,

and
do =x2c0t32.77° = (3.22 cm) x cot32.77° = 5 cm.

Hence, d; = (10+5) = 15cm.

Problem 8.22 A glass semicylinder with n = 1.5 is positioned such that its flat face
is horizontal, as shown in Fig. 8-38 (P8.22). Its horizontal surface supports a drop of
oil, as shown. When light is directed radially toward the oil, total internal reflection
occurs if 8 exceeds 53°. What is the index of refraction of the oil?

oil drop

=

Figure P8.22: Oil drop on the flat surface of a glass semicylinder (Problem 8.22).

Solution:

. N2 Ngjl
SiN0 = = = —
“np 15

Noi| = 1.5sin53° = 1.2.

Problem 8.23 A penny lies at the bottom of a water fountain at a depth of 30 cm.
Determine the diameter of a piece of paper which, if placed to float on the surface of
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.:Wmer surface“

Y

30cm

Figure P8.23: Light cone bounded by total internal reflection.

the water directly above the penny, would totally obscure the penny from view. Treat
the penny as a point and assume that n = 1.33 for water.

Solution:

1.33
d =2x = 2[(30 cm)tanBc] = (60 cm) x tan48.75° = 68.42 cm.

B =sint [i} =48.75°,

Problem 8.24 Suppose the optical fiber of Example 8-5 is submerged in water (with
n = 1.33) instead of air. Determine 65 and fj, in that case.

Solution: With ng = 1.33, ns = 1.52 and n. = 1.49, Eq. (8.40) gives

1/2

sinB, = ni(nf2 —n2)¥% = - [(1.52)? - (1.49)%] ' = 0.23,
0

1
1.33
or
0, =13.1°.

The data rate fy given by Eq. (8.45) is not a function of no, and therefore it remains
unchanged at 4.9 (Mb/s).
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Problem 825 Equation (8.45) was derived for the case where the light incident
upon the sending end of the optical fiber extends over the entire acceptance cone
shown in Fig. 8-12(b). Suppose the incident light is constrained to a narrower range
extending between normal incidence and 6, where 6’ < 6,.

(a) Obtain an expression for the maximum data rate fp, in terms of @'

(b) Evaluate f, for the fiber of Example 8-5 when 8’ = 5°.

Solution:
(@) For6, =0,

. 1 .
sinB, = —sin@/,
Ny

I I I Ing
Imax = = - = - ’
cosB2  \/1—sin?8, \/1_<gn9,)2 \/nfz—(sine’)z
L
- Imax . Imax N _ Inf2
max — — — - ’
n
tmin:—pzlga
T:At:tmax—tmin:Iﬁ L_l ’
-1
1 .
fpzz_:% M (bits/s).
(b) For:
ng = 1.52,
9/250’
I =1km,

¢ =3 x 108 mJs,
f,=59.88 (Mb/s).
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Sections 8-4 and 8-5: Reflection and Transmission at Oblique Incidence

Problem 8.26 A plane wave in air with
E' = §20e" 13442 (v/m),

is incident upon the planar surface of a dielectric material, with €, = 4, occupying the
half space z > 0. Determine:

(a) the polarization of the incident wave,

(b) the angle of incidence,

(c) the time-domain expressions for the reflected electric and magnetic fields,

(d) the time-domain expressions for the transmitted electric and magnetic fields,

and
(e) the average power density carried by the wave in the dielectric medium.

Solution:

(@) E' = y20e~i(x+42) \//m.

Since E' is along ¥, which is perpendicular to the plane of incidence, the wave is
perpendicularly polarized.

(b) From Eq. (8.48a), the argument of the exponential is

— jk1(xsin®; +zcos6;) = —j(3x+4z).

Hence,
kisin6; = 3, ki cos6; = 4,

from which we determine that

3
tan@; = 2 or 0; = 36.87°,

o ki =1/32+42=5 (rad/m).
Also,
W=Upk=ck=3x108x5=15x10° (rad/s).
©
N1=nNo=377Q,
N2 — \;]%:%:188.5 Q,

. inB; . in36.87°
B, =sin~t ST _ gip-1 | AN20-S0 =17.46°,
VEr \/Z
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_ N2c0sBi —nicosB;
© N2C0sB+n1c0s0;
T, =1+0; =0.59.

L —0.41,
In accordance with Eq. (8.49a), and using the relation E§ = I" | E],
Er — _98.26—j(3x—4z)7
Hr & 5qi 8.2 —j(3x—42)
H :(xcosei+zsm9i)n—e J :
0

where we used the fact that 6; = 6, and the z-direction has been reversed.

E' = Re[E'e/¥] = —§8.2c0s(1.5 x 10% — 3x+4z) (V/m),
H" = (X17.4+213.06)cos(1.5 x 10% —3x+4z) (mA/m).

(d) In medium 2,

— /z—j —5V4—=20 (rad/m),

. . . 1 .
8 =sin~?! [, /€ gin ei} =sin~! [— sin 36.87"} =17.46°
& 2

and the exponent of E' and H' is

and

— jka(xsinB; +zcosB;) = — j10(xsin17.46° +zc0s17.46°) = — j(3x+9.542).
Hence,
Et — 920 x 0.59¢I(3+9542)

H o o 20x0.59 _.
HY = (—X 0SBy + 25in By) T g=1(3:+9542)

n2
E' = Re[E'e/¥] = §11.8c0s(1.5 x 10% —3x—9.547)  (V/m),
H' = (—Xcos17.46° + 2sin17.46°) 1181585 cos(1.5 x 10% — 3x — 9.542)

= (—X239.72+2z16. COS(l.0o X t—3x—9.54z7 mA/m).
£59.72 +218.78) cos(1.5 x 10% — 3x — 9.54z) (mA/m)

()
o El?_ (118)2

S., = =
¥~ 2N,  2x1885

=036 (W/m2).
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Problem 8.27 Repeat Problem 8.26 for a wave in air with
H' =92 x 102 1(®+62  (A/m),

incident upon the planar boundary of a dielectric medium (z > 0) with &, = 9.

Solution:

() H =92 x10 21662,

Since H' is along ¥, which is perpendicular to the plane of incidence, the wave is
TM polarized, or equivalently, its electric field vector is parallel polarized (parallel to
the plane of incidence).

(b) From Eq. (8.65b), the argument of the exponential is

— jk1(xsin®; 4+zcos6;) = — j(8x + 62).

Hence,
kisin®; = 8, kic0s6; = 6,

from which we determine

8
8 =tan~t <g> —53.13°,

ki =V62+82=10 (rad/m).

Also,
Ww=uUpk=ck=3x108x10=3x10° (radfs).
(©
N1=nNo=377Q,
No No
= =~ =125.67 Q,
o= UE 3
B =sin! [Smei] —=sin! [7&”53'13 } = 15.47°,
Ve V9
= N2 C0Ss B; — 11C0S 6 _ 030,
N2 C0S B; + 11 C0S 6
c0s 6;

In accordance with Egs. (8.65a) to (8.65d), E{) =2x10"?nsand

E' = (Xcos6; — 2sin8;)2 x 1072, e /&+62) — (%452 — 26.03) e~} (E+62),
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E' is similar to E' except for reversal of z-components and multiplication of amplitude
by I'y. Hence, with ') = —0.30,

E = Re[E /] = —(%1.36 +21.81) cos(3 x 10% — 8x -+ 62) V/m,
H" =92 x 1072 cos(3 x 10% — 8x + 62)
— —90.6 x 1072¢os(3 x 10°% — 8x + 6z) A/m.

(d) In medium 2,

ko = Ky ? — 10v/9 = 30 rad/m,
1

. . . 1 .
8 =sin~?! [, /2 6in ei} =sin~! [— sin 53.13"} =15.47°,
€1 3

and the exponent of E' and H' is
— jka(xsin6; 4 zcos6;) = —j30(xsin15.47° +zc0s15.47°) = — j(8x+28.91z).
Hence,

E' = (Xcos 6, — 2sin Gt)E(i)r‘le*i(8X+28-912)
= (%X0.96 —20.27)2 x 1072 x 377 x 0.44 ¢ 1(8x+28.912)
= (%X3.18 —20.90) e—j(8x+28.91z)’
H'=y ol o—i(Bx+28912)
N2
= §2.64 x 102 1(8+28912)

E' = Re{E'e/?}
— (%3.18 — 20.90) cos(3 x 10% — 8x — 28.917) V/m,
H' = $2.64 x 10"2cos(3 x 10% — 8x — 28.91z) A/m.

(€)

Et 2 Ht 2 . —2\2
st — IEol” _ Hol® (264x107%)% 105 67 — a4 mwim?.
2N, 2 2

Problem 8.28 Natural light is randomly polarized, which means that, on average,
half the light energy is polarized along any given direction (in the plane orthogonal



CHAPTER 8 383

to the direction of propagation) and the other half of the energy is polarized along the
direction orthogonal to the first polarization direction. Hence, when treating natural
light incident upon a planar boundary, we can consider half of its energy to be in
the form of parallel-polarized waves and the other half as perpendicularly polarized
waves. Determine the fraction of the incident power reflected by the planar surface
of a piece of glass with n = 1.5 when illuminated by natural light at 70°.

Solution: Assume the incident power is 1 W. Hence:
Incident power with parallel polarization =05W,
Incident power with perpendicular polarization =0.5W.
€2/€1 = (np/n1)? = n? = 1.5% = 2.25. Equations (8.60) and (8.68) give

70° — /2.25 —sin?70°
rL:cos 0 5—sin“70 0.55.

€0s70° + /2.25 —sin?70°
 —2.25c0870° 4 1/2.25 —sin®70°

M= =0.21.
2.25c0870° + 1/2.25 —sin?70°
Reflected power with parallel polarization =05 (I'H)2
=0.5(0.21)2 =22 mW,
Reflected power with perpendicular polarization = 0.5(I" ,)?

= 0.5(0.55)2 = 151.3 mW.
Total reflected power = 22 4+ 151.3 = 173.3 mW, or 17.33%..

Problem 8.29 A parallel polarized plane wave is incident from air onto a dielectric
medium with & = 9 at the Brewster angle. What is the refraction angle?

Figure P8.29: Geometry of Problem 8.29.

Solution: For nonmagnetic materials, Eq. (8.72) gives

€
0, =0g =tan" !, /E—i —tan~13 = 71.57°.
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But inG; sinG;  sin7L57°
sinezzsm 1_sinB; _ sin7l. _ 032,
NG 3 3
or 6, = 18.44°,

Problem 8.30 A perpendicularly polarized wave in air is obliquely incident upon
a planar glass-air interface at an incidence angle of 30°. The wave frequency is
600 THz (1 THz = 10% Hz), which corresponds to green light, and the index of
refraction of the glass is 1.6. If the electric field amplitude of the incident wave is 50
V/m, determine

(a) the reflection and transmission coefficients, and

(b) the instantaneous expressions for E and H in the glass medium.

Solution:
(a) For nonmagnetic materials, (g2/€1) = (nz/n1)?. Using this relation in Eq.
(8.60) gives

- cosB; — \/(nz/nl)z—sinzei c0s30° — \/(1.6)2—sin230° 027
L= g = —U. s
cos8; + \/(nz/nl)2 —sin?@;,  cos30°+ \/(1.6)2 —sin?30°

TJ_:1+FJ_:1—027:073

(b) In the glass medium,

. sin®;  sin30°
sinB; = n—2 ~ 716 0.31,
or 6; = 18.21°.
12
no= /B2 =00 1O _son_ 3562 (@),

& No W
w 2if  2nfn 211x 600 x 1012 x 1.6
W oh ¢ 3xit®
E{=1,E)=0.73x50 = 36.5 V/m.

ko — 6.411% 10° rad/m,

From Egs. (8.49c¢) and (8.49d),

ct ot o— jko(xsinB+zcosO
E'! =yEle Jka( k t)7

t . .
HY = (—%cos8;+ 2sin8,) Ee*JKZ(XS'”et+Z°059‘>,
n2



CHAPTER 8 385

and the corresponding instantaneous expressions are:

E' (x,2,t) = ¥36.5c0s(0t — koxsin 6y — kpzcos®)  (V/m),
Hi(x, Z,t) = (—Xc0s6; — 2c0s 6;)0.16 cos(wt — koxsin B; — kpozcos6;)  (A/m),

with w = 21 x 10%° rad/s and ky = 6.471x 10° rad/m.

Problem 8.31 Show that the reflection coefficient I | can be written in the form
. sin(et — 6|)
L sin(6+8)
Solution: From Eq. (8.58a),

_ N2C0s6 —nycosB;  (n2/n1)cos6; —cosb
© N2c0s6; +n1cosB;  (n2/n1)cos6;+cosb;

L

Using Snell’s law for refraction given by Eq. (8.31), we have

N2 _ sin 6;
n. sing’

we have . . .
_ sinBcos6; —cosB;sinG;  sin(6; — 6;)

L7 sinB;cosB; +cosBsin®;  sin(B;+6;)

Problem 8.32  Show that for nonmagnetic media, the reflection coefficient I} can

be written in the form
_ tan(6—6))

= tan(6; +6;)
Solution: From Eg. (8.66a), I'|| is given by

N2€0s6; —n1cos6;  (n2/n1)cos6; — cosb;

I Nacos6 +nicos6 (N2/N1)cos6;+ cos6;

For nonmagnetic media, 4y = 42 = o and

na_ [ _m

N1 € N2’
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Snell’s law of refraction is

sin6y  ng
sinG  ny’
Hence, 6
SIN B¢
r, _ Sing; c0s8; — cosby _ sinB;cos 6; — sin®; cos B
I~ Sing; 008, 1 cos6; ~ sinB;cosB; +sinB;cosB;
sin 6;

To show that the expression for I" is the same as

_ tan(6,—6))
= tan(6; + 6;) ’
we shall proceed with the latter and show that it is equal to the former.

tan(6; —6;)  sin(6; —6;)cos(6; +6))
tan(6;+6;)  cos(6;—6;)sin(6+6;)

Using the identities (from Appendix C):
2sinxcosy = sin(x+y) +sin(x—y),

and if we let x = 6; — 6; and y = 6; + 6; in the numerator, while letting x = 6; + 6; and
y = 6; — 6; in the denominator, then

tan(6; —6;)  sin(26;) + sin(—26;)

tan(6; + 6;) sin(26;) +sin(26;)

But sin26 = 2sinBcos B, and sin(—B) = —sin®, hence,

tan(6; —6;)  sinB;cos6; — sinB;cos6;
tan(6;+6;)  sinB;cosO; +sinB;cosH; ’

which is the intended result.

Problem 8.33 A parallel polarized beam of light with an electric field amplitude of
10 (V/m) is incident in air on polystyrene with i, = 1 and &, = 2.6. If the incidence
angle at the air—polystyrene planar boundary is 50°, determine
(a) the reflectivity and transmissivity, and
(b) the power carried by the incident, reflected, and transmitted beams if the spot
on the boundary illuminated by the incident beam is 1 m? in area.
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Solution:
(a) From Eqg. (8.68),

_ —(e2/e1)c0osBi +/(e2/81) —sin?6,

(g2/€1)c080; + 1/ (e2/€1) —Sin 6,

_ o _ H 2 (o}

_ 2.6c0s50° + v/ 2.6 —sin“50 ~ 008,
2.6c0850° + /2.6 —sin250°
R = |ry|*=(0.08)>=6.4x 103,

T)=1-R = 0.9936.

(b)

_ |Ejol? (10)2
[ R
PI= 0, A8 = 2 To0m

Pl = RHPﬁ = (6.4x107%) x 0.085 = 0.55 MW,
Pﬁ — T”Pli‘ = 0.9936 x 0.085 = 84.45 mW.

x €0s50° = 85 mW,

Sections 8-6 to 8-11

Problem 8.34 Derive Eq. (8.89b).

Solution:
We start with Egs. (8.88a and e),

e, .. -
a—yz + jB8y = — joophy,
_~  oh, .

—jBhyx— a_xz = juegy.

To eliminate hy, we multiply the top equation by (3 and the bottom equation by wy,
and then we add them together. The result is:

08 . oo oh, .,
Ba—y+1[3 ey—wpa_szusey.



388 CHAPTER S8

Multiplying all terms by e~ 1P to convert €y to Ey (and similarly for the other field
components), and then solving for E, leads to

- 1 0E, _ oH,
o ) (‘Ba—y“’“W)

_ i g%, 0
“ke\ Py T )
where we used the relation
k? = w’ue — B2.

Problem 8.35 A hollow rectangular waveguide is to be used to transmit signals at
a carrier frequency of 6 GHz. Choose its dimensions so that the cutoff frequency of
the dominant TE mode is lower than the carrier by 25% and that of the next mode is
at least 25% higher than the carrier.

Solution:
Form =1and n= 0 (TE mode) and up, = ¢ (hollow guide), Eq. (8.106) reduces
to

c
fio=—.
10 2a

Denote the carrier frequency as fo = 6 GHz. Setting
f10=0.75fp = 0.75 x 6 GHz = 4.5 GHz,

we have
c 3x 108

8= Dt 2x45x 109

If b is chosen such thata > b > % the second mode will be TEq;, followed by TExq
at foo =9 GHz. For TEq,,

=3.33cm.

c
for==—.
01 =op
Setting fo1 = 1.25fg = 7.5 GHz, we get
C 3 x 108

=2cm.

b: pumy
2fo1 2x7.5x10°
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Problem 8.36 A TE wave propagating in a dielectric-filled waveguide of unknown
permittivity has dimensions a=5 cmand b = 3 cm. If the x-component of its electric
field is given by

Ex = —36.c0s(401) sin(1001y)
-sin(2.41tx 10%% — 52.917),  (V/m)

determine:
(a) the mode number,
(b) &, of the material in the guide,
(c) the cutoff frequency, and
(d) the expression for Hy.

Solution:
(a) Comparison of the given expression with Eg. (8.110a) reveals that

m?n = 40T, hence m=2
%T = 100Tm, hence n = 3.

Mode is TE»s.
(b) From sin(wt — [3z), we deduce that

w=241x 10 rad/s, B =52.9mrad/m.

Using Eqg. (8.105) to solve for €, we have

o= 5 B4 () ()]

~ 225
(©)
3% 10°
lUpy =~ = S = 2% 10% mis.
VEr 2.25
Upg

f_u 2\? 3\ ?
z=7\\a) "o

=10.77 GHz.
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(@)
zTEZE—?Zn/\/l—(fzs/ﬂz
:%/,/1— (%)2 —569.9 0.
Hence,
yE

= —0.063cos(40mx) sin(1007y) sin(2.411x 10%°%t —52.917)  (A/m).

Problem 8.37 A waveguide filled with a material whose €, = 2.25 has dimensions
a=2cmand b =1.4 cm. If the guide is to transmit 10.5-GHz signals, what possible
modes can be used for the transmission?

Solution:
Application of Eg. (8.106) with up, = ¢/\/& = 3 x 108/1/2.25 = 2 x 108 m/s,
gives:

fi10 =5 GHz (TE only)

for = 7.14 GHz (TE only)
f11 =8.72 GHz (TE or TM)
foo = 10 GHz (TE only)

fo1 =12.28 GHz (TE or TM)
f12 =15.1 GHz (TE or TM).

Hence, any one of the first four modes can be used to transmit 10.5-GHz signals.

Problem 8.38 For a rectangular waveguide operating in the TE;o mode, obtain
expressions for the surface charge density ps and surface current density Js on each
of the four walls of the guide.

Solution:
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For TEjq, the expressions for E and H are given by Eqg. (8.110) with m =1 and
n=0,

Ex=0,

£ — Mo g (TXY -1z
=" k2a sm(a)e ’
EJZ:O7

~ PriHy X\
o Bin ()
Hvy:O,

H, = Hocos (Z) e P2,
The applicable boundary conditions are given in Table 6-2. At the boundary between
a dielectric (medium 1) and a conductor (medium 2),
Ps=fp-Dy = €1/, Ey,
js — ﬁz X ﬁl,
where E; and H are the fields inside the guide, €, is the permittivity of the material
filling the guide, and A is the normal to the guide wall, pointing away from the wall

(inwardly). In view of the coordinate system defined for the guide, f, = X for side
wall at x =0, Ny = —X for wall at x = a, etc.

Ay
b
b
np
A
np A
2 — nH<—m 1
A
P
X <=
a 3 0

(a) Atside wall 1 at x =0, A, = X. Hence,
pS == Sls\('yEy|X:0 = O
Js = X x (XHy + 2Hy)|x=0
= _yﬁz‘x:o
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(b) At side wall 2 at x =a, fip = —X. Hence,

ps=0
Js = §Hoe P2,

(c) At bottom surface aty =0, i, =¥. Hence,

Ps=¢€1Y-YEyly-0

kZa
Js =¥ x (XHy+2H,)
— s ™\ . pm —~ipz
_Ho[xcos<a) ZJkgasm( )]e

~ LWEUTHp . E —ipz
=17 (5 )

Js=Ho [—)“(cos (%) +2j%sin (%)} e 1Pz,

Problem 8.39 A waveguide, with dimensions a =1 cm and b= 0.7 cm, is to be
used at 20 GHz. Determine the wave impedance for the dominant mode when

(a) the guide is empty, and

(b) the guide is filled with polyethylene (whose €, = 2.25).

Solution:
For the TE o mode,
Up, c

fi0= 2a T\/s—r .
When empty,
fro— 3x 108
2x 102
When filled with polyethylene, f1p = 10 GHz.
According to Eq. (8.111),

=15 GHz.

n No

e T (/T Va1 (/N2




CHAPTER 8 393

When empty,
Ze=—— __ _sn00
/1—(15/20)2
When filled,

377

T V225,/1_(10/20)2 200

Z1e

Problem 840 A narrow rectangular pulse superimposed on a carrier with a
frequency of 9.5 GHz was used to excite all possible modes in a hollow guide with
a=3cmand b =2.0 cm. If the guide is 100 m in length, how long will it take each
of the excited modes to arrive at the receiving end?

Solution:
Witha=3cm, b=2cm, and up, =c =3 x 108 m/s, application of Eq. (8.106)
leads to:

fio=5GHz
fop = 7.5 GHz
f11=9.01 GHz
fgo =10 GHz

Hence, the pulse with a 9.5-GHz carrier can excite the top three modes. Their group
velocities can be calculated with the help of Eq. (8.114),

Ug = c\/1— (fan/ )2,

0.85¢c = 2.55 x 108 m/s, for TEqg
Ug =4 0.61c = 1.84 x 108 m/s, for TEq
0.32c = 0.95 x 108 m/s, for TE11 and TMq1

which gives:

Travel time associated with these modes is:

0.39 us, for TEqg
d 100
T= T 0.54 us, for TEp

9 9 1.05 ps, for TE11 and TMys.
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Problem 8.41 If the zigzag angle 6’ is 42° for the TE1o mode, what would it be for
the TEyo mode?

Solution:
For TEjg, the derivation that started with Eq. (8.116) led to

RYAL
fo=tan"1 <§> . TEjo mode.
Had the derivation been for n = 2 (instead of n = 1), the x-dependence would have
involved a phase factor (2mx/a) (instead of (1x/a)). The sequence of steps would
have led to

4 (2T
ho = tan~1 <§> , TE,o mode.

Given that 8/, = 42°, it follows that
T tan42° = 0.90
Ba

Hence,
6’20 = tan*1(2 x 0.9) =60.9°.

Problem 8.42 Measurement of the TE1o; frequency response of an air-filled cubic
cavity revealed that its Q is 4802. If its volume is 64 mm?3, what material are its sides
made of?

Solution:
According to Eq. (8.121), the TE10;1 resonant frequency of a cubic cavity is given
by

3 % 108 3 % 108
X X — 53.0 GHz.

f101 =
1ot V2a V2 x4 %103
Its Q is given by

a
Q=55 = 4802
which gives s = 2.78 x 10~/ m. Applying
s__ 1
° V/Tf101H00c

and solving for o leads to
0c ~ 6.2 x 107 S/m.
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According to Appendix B, the material is silver.

Problem 8.43 A hollow cavity made of aluminum has dimensions a = 4 ¢m and
d = 3 cm. Calculate Q of the TE19; mode for

(@ b=2cm, and

(b) b=3cm.

Solution:
For the TE101 mode, f101 is independent of b,

1\%2 [/1\?

<a> +<a>

~ 3x10® 1 2+ 1 \?
2 4 %102 3x10-2

=6.25 GHz.

For aluminum with o = 3.5 x 107 S/m (Appendix B),

ds = _ 1.08 x 10 % m.

/Ttf101H00¢

(@Fora=4cm, b=2cmandd =3cm,

o 1 abd (a2 +d?)
O [a3(d +2b) +d3(a+ 2b)]
= 8367.

(b) Fora=4cm, b=3cm,and d =3 cm,

Q = 9850.

Problem 8.44 A 50-MHz right-hand circularly polarized plane wave with an
electric field modulus of 30 VV/m is normally incident in air upon a dielectric medium
with €, = 9 and occupying the region defined by z > 0.
(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximumatz=0and t = 0.
(b) Calculate the reflection and transmission coefficients.
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(c) Write expressions for the electric field phasors of the reflected wave, the

transmitted wave, and the total field in the region z < 0.
(d) Determine the percentages of the incident average power reflected by the

boundary and transmitted into the second medium.
Solution:
@

w 2mx50x10% T
= = — rad/m,

¢ 3x108 3
ko = %)w/sr2 = g\@: Ttrad/m.

ki=

From (7.57), RHC wave traveling in 4z direction:

E' = ag(k+ e 12)e 14z — ao(x — j)e Ik
E'(z,t) = Re [E'ej“}
= Re [ao()zej(wtfklz) _|_yej(wtfklzfn/2))}

Xapcos(uwt —kiz) + Yagcos(wt — kiz —11/2)
= Xapcos(wt —ki1z) + yagsin(wt —kyz)
E'| = [a3cos?(ot — kiz) +agsin?(ot — kiz)] Y2 _ 35 =30 Vim.

Hence, _
E =30(xo— jyo)e ™3 (Vim).

(b)
1207
Ni=no=120m (Q), n2— \;‘f_ == =4 (@)
2
_ N2—n1 40m—120m 05
T N2+n1 40m+120m

1=14IN=1-05=0.5.
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©
E'=rag(x— j§)el?
= —0.5x30(% — j§)elk?
= —15(%— j§)el™3  (Vim).
E' = tag(X— j§)e Ik
=15(%— j§)e ™ (Vim).
E,—E +E
=30(X— jy)e ™3~ 15(% — j)el™/°
= 15(X — j§)[2e71™@/3 —eI™/3]  (V/m).
(d)
% of reflected power = 100 x |I'|? = 100 x (0.5) = 25%

120m

% of transmitted power — 100|T|2% — 100 % (05)% x = = 75%.
2

Problem 8.45 Consider a flat 5-mme-thick slab of glass with €, = 2.56.

(a) If a beam of green light (Ao = 0.52 pm) is normally incident upon one of the
sides of the slab, what percentage of the incident power is reflected back by the
glass?

(b) To eliminate reflections, it is desired to add a thin layer of antireflection coating
material on each side of the glass. If you are at liberty to specify the thickness
of the antireflection material as well as its relative permittivity, what would
these specifications be?

Solution:
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Air Glass Air
Green Light € =256
|

\4 5mm >\

Zi=n |—> Z,= Ny %ZLGo

(a) Representing the wave propagation process by an equivalent transmission line
model, the input impedance at the left-hand side of the air-glass interface is (from

2.63):
Z| + jZptan Bl
Zi=20 00— ——=
=0 (Zo+ jZ, tanpl

For the glass,

No No No

Z g = —— = e ——

0= Ne= g T V256 16

ZL=nNo

Bl—ziTl—ziTﬁl—Lxx/256><5x10*3—3076923n
TN XY T 052x10°6 ‘ B ‘

Subtracting the maximum possible multiples of 21, namely 307687, leaves a
remainder of
Bl =1.23mrad.

Hence,

7 — MNo (No+ j(no/1.6)tan1.23m
' 1.6 \ (No/1.6) + jnotan1.23m

B < 1.6+ jtan 1.23T[> 1201

1+ jl.6tan1.23m) 1.6
 /16+0.882\ 120m
“\1+j141 ) 16

= 249/-258 — (224.2 — 108.4) Q.
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With Z; now representing the input impedance of the glass, the reflection coefficient
at point A is:
r— Zi—nNo
Zi+nNo
2242 j108.4— 120t 187.34 /1446
~ 224.2—j108.4+120m  610.89/-10.2°

% of reflected power = |I|? x 100 = 9.4%.
(b) To avoid reflections, we can add a quarter-wave transformer on each side of the
glass.

= 0.3067/=1%48"

Antireflection Antireflection
coating coating
Air \ Glass / Air
€, = 2.56

ldl< 5mm »d]
This requires that d be:
A
d=-—+42nA, n=0,12,...

4

where A is the wavelength in that material; i.e., A = Ao/+/€rc, Where g is the relative
permittivity of the coating material. It is also required that n of the coating material
be:

NG = NoNg.
Thus 5
g _ Mo
€rc NG ’
or
Erc = \/E_r =V 256 == 16
Hence,
Ao  0.52pum
A= - —0.411 pum,
NG H
A
d= 7 +2nA

=(0.103+0.822n) (um), n=0,1,2,...
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Problem 8.46 A parallel-polarized plane wave is incident from air at an angle
0; = 30° onto a pair of dielectric layers as shown in the figure.

(a) Determine the angles of transmission 82, 83, and 6.

(b) Determine the lateral distance d.

5crtn AV 8“;2;5
-1L Iel e
L -
3 ur_l
SCT l 'B\i g =225
|
| )
|
: 16} Air
| |
e d—

Solution:
(a) Application of Snell’s law of refraction given by (8.31) leads to:

== —_— = N _— = -2
sin9, smel,/8r2 sin30°4 / 535 0

0, = 11.54°.
Similarly,
. . 8[’2 . ° 625
= — =5sin11.54°y/ —— =0.
sinB3 =sinBy, / & sin11.54°4/ 55 0.33
03 =19.48°.
And,
. . / . 2.2
sinB4 = sinB3 £r3 =1sin19.48° —5 =05
€r4 1
04 = 30°.

As expected, the exit ray back into air will be at the same angle as 6;.
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(b)

d = (5cm)tanB2 + (5 cm)tan 63
= 5tan11.54° 4+ 5tan19.48° = 2.79 cm.

Problem 8.47 A plane wave in air with

E = (X2—94—26)e />+3  (v/m)

is incident upon the planar surface of a dielectric material, with €, = 2.25, occupying
the half-space z > 0. Determine

(&) The incidence angle 6;.

(b) The frequgr;cy of the wave.

(c) The field E of the reflected wave.

(d) The field Et of the wave transmitted into the dielectric medium.

(e) The average power density carried by the wave into the dielectric medium.

Solution:

(a) From the exponential of the given expression, it is clear that the wave direction
of travel is in the x-z plane. By comparison with the expressions in (8.48a) for
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perpendicular polarization or (8.65a) for parallel polarization, both of which have
the same phase factor, we conclude that:

Hence,

Also,

(b)

kising; = 2,
kicos6; = 3.

ki =v22+32=3.6 (rad/m)

0 =tan"1(2/3) = 33.7°.

ko =ki\/€r, =3.6V2.25=5.4 (rad/m)

1
= i _l i H —_— pr— °
0, =sin lsm i1/ 2'25] 21.7°.

27tf
L
1 C
8
g ki 36x3x107 o) ihz.
21T 21T

(c) In order to determine the electric field of the reflected wave, we first have to
determine the polarization of the wave. The vector argument in the given expression

for E indicates that the incident wave is a mixture of parallel and perpendicular
polarization components. Perpendicular polarization has a §-component only (see
8.46a), whereas parallel polarization has only X and Z components (see 8.65a). Hence,
we shall decompose the incident wave accordingly:

with

E —E +E

E| = —§4e 1@+ (v/m)
E| = (k2—26)e 1>+ (v/m)

From the above expressions, we deduce:

Elo=—4V/m

Eo= V22462 =6.32 V/m.
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Next, we calculate I" and T for each of the two polarizations:

cosB; — 1/ (g2/€1) — sin6;
L pu—

cosB; + 1/ (g2/€1) — sin 6;
Using 6; = 33.7° and €/€1 = 2.25/1 = 2.25 leads to:

N =-0.25
T, =1+T, =0.75.
Similarly,

—(€2/€1)€080; + 1/ (€2/€1) — Sin?B;
P Tleaeeostit eofe) —sinte
(€2/€1)C0S0; + 1/ (€2/€1) — Sin? 6;
C0s B €0s33.7°
=(1+T =(1-0.15)———— =0.76.
T (1+ H)coset (1-0 5)00321.70 0.76
The electric fields of the reflected and transmitted waves for the two polarizations are
given by (8.49a), (8.49c), (8.65c), and (8.65e):

=r &l a—jki(xsinBr—zcos
E, =JE[ e llabn®r "

El —JE! e~ jka(xSinB¢+2zcos6t)
Elr‘ = ()’i cos O, + Zsin er)Eﬁoe—jkl(XsinBr—zcosar)
ET‘ = (Xcos8; — 2sin Gt)Eﬁoe*“@(xs‘”eﬁzcoset)
Based on our earlier calculations:
6, =6, =33.7°
0, =21.7°
ki = 3.6 rad/m, ko = 5.4 rad/m,
E'o=T.E\ = (—0.25) x (—4) =1 V/m.
E'ly=T.E q=0.75x (—4) = -3 V/m.
Efo =T Ejo = (—0.15) x 6.32 = —0.95 V/m.
Ejo=T|E|o=0.76 x6.32 = 4.8 V/m.
Using the above values, we have:
= (=%0.79+§ —20.53)e />3 (v/m).



404

(d)
~t ~t ~t
E =E, +E |
— (X4.46 —§3—21.78)e (252 (v/m).
©
St — |E(t)|2
2n2
IEL[2 = (4.46)2 + 32 1 (1.78)% = 32.06
No 377
= =2 —2513Q
N2 & 15 51.3
. 3206

_ v 2
= 5 oe15 =638 (MW/m?),
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