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Chapter 6:  Maxwell’s Equations for Time-Varying Fields 
 
 
Lesson #37 
Chapter — Section:  6-1, 6-2 
Topics:  Faraday’s law, stationary loop in changing magnetic field 
 
Highlights: 

• Faraday’s law 
• EMF 

 
Special Illustrations: 

• Example 6-1 
• Example 6-2 
• CD-ROM Demo 6.1 
• CD-ROM Modules 6.1 and 6.2 
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Lesson #38 
Chapter — Section:  6-3, 6-4 
Topics:  Ideal transformer, moving conductor 
 
Highlights: 

• Transformer voltage and current relations 
• EMF for moving conductor 

 
Special Illustrations: 

• CD-ROM Modules 6.3 and 6.4 
• CD-ROM Demo 6.2 
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Lesson #39 
Chapter — Section:  6-5, 6-6 
Topics:  EM Generator, moving conductor in changing field 
 
Highlights: 

• Motor and generator reciprocity 
• EMF for combination of motional and transformer 

 
Special Illustrations: 

• Technology Brief on “EMF Sensors” (CD-ROM) 
 
 
EMF Sensors  

An electromotive force (emf) sensor is a device that can generate an induced voltage in response to an 
external stimulus. Three types of emf sensors are profiled in this Technical Brief:  the piezoelectric 
transducer, the Faraday magnetic flux sensor, and the thermocouple.  

 

Piezoelectric Transducers 

Piezoelectricity refers to the property of certain 
crystals, such as quartz, to become electrically 
polarized when the crystal is subjected to 
mechanical pressure, thereby exhibiting a 
voltage across it. The crystal consists of polar 
domains represented by equivalent dipoles (A). 
Under the absence of an external force, the polar 
domains are randomly oriented throughout the 
material (A1), but when compressive or tensile 
(stretching) stress is applied to the crystal, the 
polar domains align themselves along one of the 
principal axes of the crystal, leading to a net 
polarization (electric charge) at the crystal 
surfaces (A2 and A3). Compression and 
stretching generate voltages of opposite polarity. 
The piezoelectric effect (piezein means to press 

or squeeze in Greek) was discovered by the 
Curie brothers, Pierre and Paul-Jacques, in 1880, 
and a year later Lippmann predicted the 
converse property, namely that if subjected to an 
electric field, the crystal would change in shape. 
Thus, the piezoelectric effect is a reversible 
(bidirectional) electro-mechanical process.
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Lesson #40 
Chapter — Section:  6-7, 6-8 
Topics:  Displacement current, boundary conditions 
 
Highlights: 

• Concept of “displacement current” 
• Boundary conditions for the dynamic case 

 
Special Illustrations: 

• Example 6-7 
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Lesson #41 
Chapter — Section:  6-9, 6-10 
Topics:  Charge-current continuity, charge dissipation 
 
Highlights: 

• Continuity equation 
• Relaxation time constant 

 
Special Illustrations: 
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Lesson #42 
Chapter — Section:  6-11 
Topics:    EM potentials 
 
Highlights: 

• Retarded potential 
• Relation of potentials to fields in the dynamic case 

 
Special Illustrations: 

Example 6-8 
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Chapter 6

Sections 6-1 to 6-6: Faraday’s Law and its Applications

Problem 6.1 The switch in the bottom loop of Fig. 6-17 (P6.1) is closed at t � 0
and then opened at a later time t1. What is the direction of the current I in the top
loop (clockwise or counterclockwise) at each of these two times?

R2

R1

I

+
-

Figure P6.1: Loops of Problem 6.1.

Solution: The magnetic coupling will be strongest at the point where the wires of
the two loops come closest. When the switch is closed the current in the bottom loop
will start to flow clockwise, which is from left to right in the top portion of the bottom
loop. To oppose this change, a current will momentarily flow in the bottom of the
top loop from right to left. Thus the current in the top loop is momentarily clockwise
when the switch is closed. Similarly, when the switch is opened, the current in the
top loop is momentarily counterclockwise.

Problem 6.2 The loop in Fig. 6-18 (P6.2) is in the x–y plane and B � ẑB0 sinωt
with B0 positive. What is the direction of I (φ̂φφ or � φ̂φφ) at (a) t � 0, (b) ωt � π � 4, and
(c) ωt � π � 2?

Solution: I � Vemf � R. Since the single-turn loop is not moving or changing shape
with time, V m

emf � 0 V and Vemf � V tr
emf. Therefore, from Eq. (6.8),

I � V tr
emf � R � � 1

R

�
S

∂B
∂t
� ds 

If we take the surface normal to be 	 ẑ, then the right hand rule gives positive
flowing current to be in the 	 φ̂φφ direction.

I � � A
R

∂
∂t

B0 sinωt � � AB0ω
R

cosωt (A) �
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R

z

y

x

I

Figure P6.2: Loop of Problem 6.2.

where A is the area of the loop.
(a) A, ω and R are positive quantities. At t � 0, cosωt � 1 so I � 0 and the

current is flowing in the � φ̂φφ direction (so as to produce an induced magnetic field
that opposes B).

(b) At ωt � π � 4, cosωt � � 2 � 2 so I � 0 and the current is still flowing in the � φ̂φφ
direction.

(c) At ωt � π � 2, cosωt � 0 so I � 0. There is no current flowing in either direction.

Problem 6.3 A coil consists of 100 turns of wire wrapped around a square frame
of sides 0.25 m. The coil is centered at the origin with each of its sides parallel to
the x- or y-axis. Find the induced emf across the open-circuited ends of the coil if the
magnetic field is given by

(a) B � ẑ20e � 3t (T),

(b) B � ẑ20cos x cos103t (T),

(c) B � ẑ20cos x sin2y cos103t (T).

Solution: Since the coil is not moving or changing shape, V m
emf � 0 V and

Vemf � V tr
emf. From Eq. (6.6),

Vemf � � N
d
dt

�
S

B � ds � � N
d
dt

� 0 � 125

� 0 � 125

� 0 � 125

� 0 � 125
B � � ẑ dx dy � �

where N � 100 and the surface normal was chosen to be in the 	 ẑ direction.
(a) For B � ẑ20e � 3t (T),

Vemf � � 100
d
dt

�
20e � 3t � 0  25 � 2 ��� 375e � 3t (V) 
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(b) For B � ẑ20cos xcos 103t (T),

Vemf � � 100
d
dt

�
20cos 103t

� 0 � 125

x � � 0 � 125

� 0 � 125

y � � 0 � 125
cosx dx dy 
 � 124  6sin 103t (kV) 

(c) For B � ẑ20cos xsin 2ycos 103t (T),

Vemf � � 100
d
dt

�
20cos 103t

� 0 � 125

x � � 0 � 125

� 0 � 125

y � � 0 � 125
cosxsin 2y dx dy 
 � 0 

Problem 6.4 A stationary conducting loop with internal resistance of 0.5 Ω is
placed in a time-varying magnetic field. When the loop is closed, a current of 5 A
flows through it. What will the current be if the loop is opened to create a small gap
and a 2-Ω resistor is connected across its open ends?

Solution: Vemf is independent of the resistance which is in the loop. Therefore, when
the loop is intact and the internal resistance is only 0  5 Ω,

Vemf � 5 A � 0  5 Ω � 2  5 V 
When the small gap is created, the total resistance in the loop is infinite and the
current flow is zero. With a 2-Ω resistor in the gap,

I � Vemf � � 2 Ω 	 0  5 Ω ��� 2  5 V � 2  5 Ω � 1 (A) 
Problem 6.5 A circular-loop TV antenna with 0.02 m2 area is in the presence of a
uniform-amplitude 300-MHz signal. When oriented for maximum response, the loop
develops an emf with a peak value of 30 (mV). What is the peak magnitude of B of
the incident wave?

Solution: TV loop antennas have one turn. At maximum orientation, Eq. (6.5)
evaluates to Φ � �

B � ds � � BA for a loop of area A and a uniform magnetic field
with magnitude B � �B � . Since we know the frequency of the field is f � 300 MHz,
we can express B as B � B0 cos

�
ωt 	 α0 � with ω � 2π � 300 � 106 rad/s and α0 an

arbitrary reference phase. From Eq. (6.6),

Vemf � � N
dΦ
dt

� � A
d
dt
�B0 cos

�
ωt 	 α0 ��� � AB0ωsin

�
ωt 	 α0 � 

Vemf is maximum when sin
�
ωt 	 α0 ��� 1. Hence,

30 � 10 � 3 � AB0ω � 0  02 � B0 � 6π � 108 �
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which yields B0 � 0  8 (nA/m).

Problem 6.6 The square loop shown in Fig. 6-19 (P6.6) is coplanar with a long,
straight wire carrying a current

I
�
t ��� 5cos 2π � 104t (A) 

(a) Determine the emf induced across a small gap created in the loop.

(b) Determine the direction and magnitude of the current that would flow through
a 4-Ω resistor connected across the gap. The loop has an internal resistance of
1 Ω.

y

x

z

5cm

I(t)

10cm

10cm

Figure P6.6: Loop coplanar with long wire (Problem 6.6).

Solution:
(a) The magnetic field due to the wire is

B � φ̂φφ
µ0I
2πr

� � x̂
µ0I
2πy

�
where in the plane of the loop, φ̂φφ � � x̂ and r � y. The flux passing through the loop
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is

Φ � �
S

B � ds � � 15 cm

5 cm

�
� x̂

µ0I
2πy 
 � � � x̂10 (cm) � dy

� µ0I � 10 � 1

2π
ln

15
5� 4π � 10 � 7 � 5cos

�
2π � 104t ��� 10 � 1

2π
� 1  1� 1  1 � 10 � 7 cos

�
2π � 104t � (Wb) 

Vemf � � dΦ
dt

� 1  1 � 2π � 104 sin
�
2π � 104t ��� 10 � 7

� 6  9 � 10 � 3 sin
�
2π � 104t � (V) 

(b)

Iind � Vemf

4 	 1
� 6  9 � 10 � 3

5
sin

�
2π � 104t ��� 1  38sin

�
2π � 104t � (mA) 

At t � 0, B is a maximum, it points in � x̂-direction, and since it varies as
cos

�
2π � 104t � , it is decreasing. Hence, the induced current has to be CCW when

looking down on the loop, as shown in the figure.

Problem 6.7 The rectangular conducting loop shown in Fig. 6-20 (P6.7) rotates at
6,000 revolutions per minute in a uniform magnetic flux density given by

B � ŷ50 (mT) 
Determine the current induced in the loop if its internal resistance is 0  5 Ω.

Solution:

Φ � �
S

B � dS � ŷ50 � 10 � 3
� ŷ
�
2 � 3 � 10 � 4 � cos φ

�
t ��� 3 � 10 � 5 cosφ

�
t � �

φ
�
t ��� ωt � 2π � 6 � 103

60
t � 200πt (rad/s) �

Φ � 3 � 10 � 5 cos
�
200πt � (Wb) �

Vemf � � dΦ
dt

� 3 � 10 � 5 � 200πsin
�
200πt ��� 18  85 � 10 � 3 sin

�
200πt � (V) �

Iind � Vemf

0  5 � 37  7sin
�
200πt � (mA) 
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y

x

z

B

B

ω
φ(t)

3cm

2cm

Figure P6.7: Rotating loop in a magnetic field (Problem 6.7).

The direction of the current is CW (if looking at it along � x̂-direction) when the loop
is in the first quadrant (0

� φ � π � 2). The current reverses direction in the second
quadrant, and reverses again every quadrant.

Problem 6.8 A rectangular conducting loop 5 cm � 10 cm with a small air gap in
one of its sides is spinning at 7200 revolutions per minute. If the field B is normal to
the loop axis and its magnitude is 6 � 10 � 6 T, what is the peak voltage induced across
the air gap?

Solution:

ω � 2π rad/cycle � 7200 cycles/min
60 s/min

� 240π rad/s �
A � 5 cm � 10 cm � � 100 cm/m � 2 � 5  0 � 10 � 3 m2 

From Eqs. (6.36) or (6.38), Vemf � AωB0 sin ωt; it can be seen that the peak voltage is

V peak
emf � AωB0 � 5  0 � 10 � 3 � 240π � 6 � 10 � 6 � 22  62

�
µV � 

Problem 6.9 A 50-cm-long metal rod rotates about the z-axis at 90 revolutions per
minute, with end 1 fixed at the origin as shown in Fig. 6-21 (P6.9). Determine the
induced emf V12 if B � ẑ2 � 10 � 4 T.

Solution: Since B is constant, Vemf � V m
emf. The velocity u for any point on the bar

is given by u � φ̂φφrω, where

ω � 2π rad/cycle � �
90 cycles/min ��

60 s/min � � 3π rad/s 
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ω

1

2

x

y

z

B

Figure P6.9: Rotating rod of Problem 6.9.

From Eq. (6.24),

V12 � V m
emf � � 1

2

�
u � B � � dl � � 0

r � 0 � 5
�
φ̂φφ3πr � ẑ2 � 10 � 4 � � r̂ dr

� 6π � 10 � 4
� 0

r � 0 � 5 r dr

� 3π � 10 � 4r2 ���
0

0 � 5� � 3π � 10 � 4 � 0  25 � � 236
�
µV � 

Problem 6.10 The loop shown in Fig. 6-22 (P6.10) moves away from a wire
carrying a current I1 � 10 (A) at a constant velocity u � ŷ7  5 (m/s). If R � 10 Ω
and the direction of I2 is as defined in the figure, find I2 as a function of y0, the
distance between the wire and the loop. Ignore the internal resistance of the loop.

Solution: Assume that the wire carrying current I1 is in the same plane as the loop.
The two identical resistors are in series, so I2 � Vemf � 2R, where the induced voltage
is due to motion of the loop and is given by Eq. (6.26):

Vemf � V m
emf � �

�
C

�
u � B � � dl 

The magnetic field B is created by the wire carrying I1. Choosing ẑ to coincide with
the direction of I1, Eq. (5.30) gives the external magnetic field of a long wire to be

B � φ̂φφ
µ0I1

2πr
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u

u

I1 = 10 A

I2
20 cm

R

z

R

y0

10 cm

Figure P6.10: Moving loop of Problem 6.10.

For positive values of y0 in the y-z plane, ŷ � r̂, so

u � B � ŷ � u � � � � B � r̂ � u � � � � φ̂φφ
µ0I1

2πr
� ẑ

µ0I1u
2πr


Integrating around the four sides of the loop with dl � ẑ dz and the limits of
integration chosen in accordance with the assumed direction of I2, and recognizing
that only the two sides without the resistors contribute to V m

emf, we have

V m
emf � � 0 � 2

0

�
ẑ

µ0I1u
2πr 
 ����

r � y0

�

�
ẑ dz � 	 � 0

0 � 2
�

ẑ
µ0I1u
2πr 
 ����

r � y0 � 0 � 1 �
�
ẑ dz �

� 4π � 10 � 7 � 10 � 7  5 � 0  2
2π

�
1
y0 � 1

y0 	 0  1 

� 3 � 10 � 6

�
1
y0 � 1

y0 	 0  1 
 (V) �
and therefore

I2 � V m
emf

2R
� 150

�
1
y0 � 1

y0 	 0  1 
 (nA) 
Problem 6.11 The conducting cylinder shown in Fig. 6-23 (P6.11) rotates about its
axis at 1,200 revolutions per minute in a radial field given by

B � r̂6 (T) 
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z

10cm +

-
V

5cm

ω

Sliding contact

Figure P6.11: Rotating cylinder in a magnetic field (Problem 6.11).

The cylinder, whose radius is 5 cm and height 10 cm, has sliding contacts at its top
and bottom connected to a voltmeter. Determine the induced voltage.

Solution: The surface of the cylinder has velocity u given by

u � φ̂φφωr � φ̂φφ2π � 1 � 200
60

� 5 � 10 � 2 � φ̂φφ2π (m/s) �
V12 � � L

0

�
u � � � B � � dl � � 0 � 1

0

�
φ̂φφ2π � � � r̂6 � � ẑ dz � � 3  77 (V) 

Problem 6.12 The electromagnetic generator shown in Fig. 6-12 is connected to an
electric bulb with a resistance of 150 Ω. If the loop area is 0.1 m2 and it rotates
at 3,600 revolutions per minute in a uniform magnetic flux density B0 � 0  4 T,
determine the amplitude of the current generated in the light bulb.

Solution: From Eq. (6.38), the sinusoidal voltage generated by the a-c generator is
Vemf � AωB0 sin

�
ωt 	 C0 ��� V0 sin

�
ωt 	 C0 � . Hence,

V0 � AωB0 � 0  1 � 2π � 3 � 600
60

� 0  4 � 15  08 (V) �
I � V0

R
� 15  08

150
� 0  1 (A) 

Problem 6.13 The circular disk shown in Fig. 6-24 (P6.13) lies in the x–y plane
and rotates with uniform angular velocity ω about the z-axis. The disk is of radius a
and is present in a uniform magnetic flux density B � ẑB0. Obtain an expression for
the emf induced at the rim relative to the center of the disk.
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x
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ω

Figure P6.13: Rotating circular disk in a magnetic field (Problem 6.13).

y

x

φ
ur

Figure P6.13: (a) Velocity vector u.

Solution: At a radial distance r, the velocity is

u � φ̂φφωr

where φ is the angle in the x–y plane shown in the figure. The induced voltage is

V � � a

0

�
u � � � B � � dl � � a

0
� � φ̂φφωr � � � � ẑB0 � � r̂ dr

φ̂φφ � � � ẑ is along r̂. Hence,

V � ωB0

� a

0
r dr � ωB0a2

2


Section 6-7: Displacement Current

Problem 6.14 The plates of a parallel-plate capacitor have areas 10 cm2 each
and are separated by 2 cm. The capacitor is filled with a dielectric material with
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ε � 4ε0, and the voltage across it is given by V
�
t � � 30cos 2π � 106t (V). Find the

displacement current.

Solution: Since the voltage is of the form given by Eq. (6.46) with V0 � 30 V and
ω � 2π � 106 rad/s, the displacement current is given by Eq. (6.49):

Id � � εA
d

V0ωsin ωt

� � 4 � 8  854 � 10 � 12 � 10 � 10 � 4

2 � 10 � 2 � 30 � 2π � 106 sin
�
2π � 106t �

� � 0  33sin
�
2π � 106t � (mA) 

Problem 6.15 A coaxial capacitor of length l � 6 cm uses an insulating dielectric
material with εr � 9. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If
the voltage applied across the capacitor is

V
�
t ��� 50sin

�
120πt � (V) �

what is the displacement current?

l

r

Id

+

-
V(t) 2a 2b

Figure P6.15:

Solution: To find the displacement current, we need to know E in the dielectric space
between the cylindrical conductors. From Eqs. (4.114) and (4.115),

E � � r̂
Q

2πεrl
�

V � Q
2πεl

ln

�
b
a 
 

Hence,

E � � r̂
V

r ln � b
a � � � r̂

50sin
�
120πt �

r ln2
� � r̂

72  1
r

sin
�
120πt � (V/m) �
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D � εE� εrε0E

� � r̂9 � 8  85 � 10 � 12 � 72  1
r

sin
�
120πt �

� � r̂
5  75 � 10 � 9

r
sin

�
120πt � (C/m2) 

The displacement current flows between the conductors through an imaginary
cylindrical surface of length l and radius r. The current flowing from the outer
conductor to the inner conductor along � r̂ crosses surface S where

S � � r̂2πrl 
Hence,

Id � ∂D
∂t
� S � � r̂

∂
∂t

�
5  75 � 10 � 9

r
sin

�
120πt � 
 � � � r̂2πrl �

� 5  75 � 10 � 9 � 120π � 2πl cos
�
120πt �� 0  82cos

�
120πt � (µA) 

Alternatively, since the coaxial capacitor is lossless, its displacement current has to
be equal to the conduction current flowing through the wires connected to the voltage
sources. The capacitance of a coaxial capacitor is given by (4.116) as

C � 2πεl

ln � b
a � 

The current is

I � C
dV
dt

� 2πεl

ln � b
a � � 120π � 50cos

�
120πt ��� � 0  82cos

�
120πt � (µA) �

which is the same answer we obtained before.

Problem 6.16 The parallel-plate capacitor shown in Fig. 6-25 (P6.16) is filled
with a lossy dielectric material of relative permittivity εr and conductivity σ. The
separation between the plates is d and each plate is of area A. The capacitor is
connected to a time-varying voltage source V

�
t � .

(a) Obtain an expression for Ic, the conduction current flowing between the plates
inside the capacitor, in terms of the given quantities.
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+

-
V(t)

I

A

dε, σ

Figure P6.16: Parallel-plate capacitor containing a lossy dielectric material (Problem
6.16).

(b) Obtain an expression for Id, the displacement current flowing inside the
capacitor.

(c) Based on your expression for parts (a) and (b), give an equivalent-circuit
representation for the capacitor.

(d) Evaluate the values of the circuit elements for A � 4 cm2, d � 0  5 cm, εr � 4,
σ � 2  5 (S/m), and V

�
t ��� 10cos

�
3π � 103t � (V).

Solution:
(a)

R � d
σA

� Ic � V
R
� V σA

d


(b)

E � V
d
� Id � ∂D

∂t
� A � εA

∂E
∂t

� εA
d

∂V
∂t


(c) The conduction current is directly proportional to V , as characteristic of a

resistor, whereas the displacement current varies as ∂V � ∂t, which is characteristic
of a capacitor. Hence,

R � d
σA

and C � εA
d


(d)

R � 0  5 � 10 � 2

2  5 � 4 � 10 � 4 � 5 Ω �
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+

-

V(t)

I
Id

C
Ic

RV(t)

+

-

ε, σ

Actual Circuit Equivalent Circuit

Figure P6.16: (a) Equivalent circuit.

C � 4 � 8  85 � 10 � 12 � 4 � 10 � 4

0  5 � 10 � 2 � 2  84 � 10 � 12 F 
Problem 6.17 An electromagnetic wave propagating in seawater has an electric
field with a time variation given by E � ẑE0 cosωt. If the permittivity of water is
81ε0 and its conductivity is 4 (S/m), find the ratio of the magnitudes of the conduction
current density to displacement current density at each of the following frequencies:
(a) 1 kHz, (b) 1 MHz, (c) 1 GHz, (d) 100 GHz.

Solution: From Eq. (6.44), the displacement current density is given by

Jd � ∂
∂t

D � ε
∂
∂t

E

and, from Eq. (4.67), the conduction current is J � σE. Converting to phasors and
taking the ratio of the magnitudes,

�����

�
J�
Jd

�����
� �����

σ
�
E

jωεrε0

�
E �����

� σ
ωεrε0


(a) At f � 1 kHz, ω � 2π � 103 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 103 � 81 � 8  854 � 10 � 12 � 888 � 103 
The displacement current is negligible.

(b) At f � 1 MHz, ω � 2π � 106 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 106 � 81 � 8  854 � 10 � 12 � 888 
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The displacement current is practically negligible.
(c) At f � 1 GHz, ω � 2π � 109 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 109 � 81 � 8  854 � 10 � 12 � 0  888 
Neither the displacement current nor the conduction current are negligible.

(d) At f � 100 GHz, ω � 2π � 1011 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 1011 � 81 � 8  854 � 10 � 12 � 8  88 � 10 � 3 
The conduction current is practically negligible.

Sections 6-9 and 6-10: Continuity Equation and Charge Dissipation

Problem 6.18 At t � 0, charge density ρv0 was introduced into the interior of a
material with a relative permittivity εr � 9. If at t � 1 µs the charge density has
dissipated down to 10 � 3ρv0, what is the conductivity of the material?

Solution: We start by using Eq. (6.61) to find τr:

ρv
�
t ��� ρv0e � t � τr �

or

10 � 3ρv0 � ρv0e � 10 � 6 � τr �
which gives

ln10 � 3 � � 10 � 6

τr
�

or

τr � � 10 � 6

ln10 � 3 � 1  45 � 10 � 7 (s) 
But τr � ε � σ � 9ε0 � σ. Hence

σ � 9ε0

τr
� 9 � 8  854 � 10 � 12

1  45 � 10 � 7 � 5  5 � 10 � 4 (S/m) 
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Problem 6.19 If the current density in a conducting medium is given by

J
�
x � y � z; t � � �

x̂z2 � ŷ4y2 	 ẑ2x � cos ωt �
determine the corresponding charge distribution ρv

�
x � y � z; t � .

Solution: Eq. (6.58) is given by

∇ � J � � ∂ρv

∂t
 (24)

The divergence of J is

∇ � J � �
x̂

∂
∂x 	 ŷ

∂
∂y 	 ẑ

∂
∂z 
 �

�
x̂z2 � ŷ4y2 	 ẑ2x � cos ωt

� � 4
∂
∂y

�
y2 cosωt ��� � 8ycos ωt 

Using this result in Eq. (24) and then integrating both sides with respect to t gives

ρv � � � �
∇ � J � dt � � � � 8ycosωt dt � 8y

ω
sinωt 	 C0 �

where C0 is a constant of integration.

Problem 6.20 In a certain medium, the direction of current density J points in the
radial direction in cylindrical coordinates and its magnitude is independent of both φ
and z. Determine J, given that the charge density in the medium is

ρv � ρ0r cos ωt
�
C/m3 � 

Solution: Based on the given information,

J � r̂Jr
�
r � 

With Jφ � Jz � 0, in cylindrical coordinates the divergence is given by

∇ � J � 1
r

∂
∂r

�
rJr � 

From Eq. (6.54),

∇ � J � � ∂ρv

∂t
� � ∂

∂t

�
ρ0r cos ωt ��� ρ0rωsin ωt 
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Hence

1
r

∂
∂r

�
rJr ��� ρ0rωsin ωt �

∂
∂r

�
rJr ��� ρ0r2ωsin ωt �

� r

0

∂
∂r

�
rJr � dr � ρ0ωsin ωt

� r

0
r2 dr�

rJr � r0 � �
ρ0ωsinωt � r3

3 ����

r

0
�

Jr � ρ0ωr2

3
sinωt �

and

J � r̂Jr � r̂
ρ0ωr2

3
sinωt (A/m2) 

Problem 6.21 If we were to characterize how good a material is as an insulator by
its resistance to dissipating charge, which of the following two materials is the better
insulator?

Dry Soil: εr � 2  5, σ � 10 � 4 (S/m)
Fresh Water: εr � 80, σ � 10 � 3 (S/m)

Solution: Relaxation time constant τr � ε
σ .

For dry soil, τr � 2  5
10 � 4 � 2  5 � 104 s.

For fresh water, τr � 80
10 � 3 � 8 � 104 s.

Since it takes longer for charge to dissipate in fresh water, it is a better insulator than
dry soil.

Sections 6-11: Electromagnetic Potentials

Problem 6.22 The electric field of an electromagnetic wave propagating in air is
given by

E
�
z � t ��� x̂4cos

�
6 � 108t � 2z � 	 ŷ3sin

�
6 � 108t � 2z � (V/m) 
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Find the associated magnetic field H
�
z � t � .

Solution: Converting to phasor form, the electric field is given by
�
E
�
z ��� x̂4e � j2z � jŷ3e � j2z (V/m) �

which can be used with Eq. (6.87) to find the magnetic field:

�
H
�
z ��� 1

� jωµ
∇ � �E

� 1

� jωµ
������

x̂ ŷ ẑ
∂ � ∂x ∂ � ∂y ∂ � ∂z

4e � j2z � j3e � j2z 0
������� 1

� jωµ

�
x̂6e � j2z � ŷ j8e � j2z �

� j
6 � 108 � 4π � 10 � 7

�
x̂6 � ŷ j8 � e � j2z � jx̂8  0e � j2z 	 ŷ10  6e � j2z (mA/m) 

Converting back to instantaneous values, this is

H
�
t � z ��� � x̂8  0sin

�
6 � 108t � 2z � 	 ŷ10  6cos

�
6 � 108t � 2z � (mA/m) 

Problem 6.23 The magnetic field in a dielectric material with ε � 4ε0, µ � µ0, and
σ � 0 is given by

H
�
y � t ��� x̂5cos

�
2π � 107t 	 ky � (A/m) 

Find k and the associated electric field E.

Solution: In phasor form, the magnetic field is given by
�
H � x̂5e jky (A/m). From

Eq. (6.86),

�
E � 1

jωε
∇ � �H � � jk

jωε
ẑ5e jky

and, from Eq. (6.87),

�
H � 1

� jωµ
∇ � �E � � jk2

� jω2εµ
x̂5e jky �

which, together with the original phasor expression for
�
H, implies that

k � ω � εµ � ω � εr

c
� 2π � 107 � 4

3 � 108 � 4π
30

(rad/m) 
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Inserting this value in the expression for
�
E above,

�
E � � ẑ

4π � 30
2π � 107 � 4 � 8  854 � 10 � 12 5e j4πy � 30 � � ẑ941e j4πy � 30 (V/m) 

Problem 6.24 Given an electric field

E � x̂E0 sinaycos
�
ωt � kz � �

where E0, a, ω, and k are constants, find H.

Solution:

E � x̂E0 sinaycos
�
ωt � kz � ��

E � x̂E0 sinay e � jkz �
�
H � � 1

jωµ
∇ � � � �E

� � 1
jωµ

�
ŷ

∂
∂z

�
E0 sin ay e � jkz � � ẑ

∂
∂y

�
E0 sinay e � jkz � �

� E0

ωµ
� ŷk sinay � ẑ jacos ay � e � jkz �

H � ��� � �He jωt �
� ���

�
E0

ωµ
� ŷk sinay 	 ẑacosay e � jπ � 2 � e � jkze jωt �� E0

ωµ
� ŷk sinaycos

�
ωt � kz � 	 ẑacos aycos � ωt � kz � π

2
� �

� E0

ωµ
� ŷk sin aycos

�
ωt � kz � 	 ẑacos aysin

�
ωt � kz ��� 

Problem 6.25 The electric field radiated by a short dipole antenna is given in
spherical coordinates by

E
�
R � θ; t ��� θ̂θθ

2 � 10 � 2

R
sinθ cos

�
6π � 108t � 2πR � (V/m) 

Find H
�
R � θ; t � .

Solution: Converting to phasor form, the electric field is given by

�
E
�
R � θ ��� θ̂θθEθ � θ̂θθ

2 � 10 � 2

R
sinθe � j2πR (V/m) �
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which can be used with Eq. (6.87) to find the magnetic field:

�
H
�
R � θ ��� 1

� jωµ
∇ � �E � 1

� jωµ

�
R̂

1
Rsinθ

∂Eθ

∂φ 	 φ̂φφ
1
R

∂
∂R

�
REθ � �

� 1

� jωµ
φ̂φφ

2 � 10 � 2

R
sinθ

∂
∂R

�
e � j2πR �

� φ̂φφ
2π

6π � 108 � 4π � 10 � 7

2 � 10 � 2

R
sin θe � j2πR

� φ̂φφ
53
R

sinθ e � j2πR (µA/m) 
Converting back to instantaneous value, this is

H
�
R � θ; t ��� φ̂φφ

53
R

sinθcos
�
6π � 108t � 2πR � (µA/m) 

Problem 6.26 A Hertzian dipole is a short conducting wire carrying an
approximately constant current over its length l. If such a dipole is placed along
the z-axis with its midpoint at the origin and if the current flowing through it is
i
�
t ��� I0 cos ωt, find

(a) the retarded vector potential
�
A
�
R � θ � φ � at an observation point Q

�
R � θ � φ � in a

spherical coordinate system, and

(b) the magnetic field phasor
�
H
�
R � θ � φ � .

Assume l to be sufficiently small so that the observation point is approximately
equidistant to all points on the dipole; that is, assume that R � � R.

Solution:
(a) In phasor form, the current is given by

�
I � I0. Explicitly writing the volume

integral in Eq. (6.84) as a double integral over the wire cross section and a single
integral over its length,

�
A � µ

4π

� l � 2
� l � 2

� �
s

�
J
�
Ri � e � jkR �

R �
ds dz �

where s is the wire cross section. The wire is infinitesimally thin, so that R � is not a
function of x or y and the integration over the cross section of the wire applies only to
the current density. Recognizing that

�
J � ẑI0 � s, and employing the relation R � � R,

�
A � ẑ

µI0

4π

� l � 2
� l � 2 e � jkR �

R �
dz � ẑ

µI0

4π

� l � 2
� l � 2 e � jkR

R
dz � ẑ

µI0l
4πR

e � jkR 
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In spherical coordinates, ẑ � R̂cosθ � θ̂θθsinθ, and therefore

�
A � �

R̂cosθ � θ̂θθsinθ � µI0l
4πR

e � jkR 
(b) From Eq. (6.85),

�
H � 1

µ
∇ � �A � I0l

4π
∇ � � � R̂cosθ � θ̂θθsinθ � e � jkR

R �
� I0l

4π
φ̂φφ

1
R

�
∂

∂R
� � sinθe � jkR � � ∂

∂θ

�
cosθ

e � jkR

R 
 

� φ̂φφ

I0l sinθe � jkR

4πR

�
jk 	 1

R 
 
Problem 6.27 The magnetic field in a given dielectric medium is given by

H � ŷ6cos 2zsin
�
2 � 107t � 0  1x � (A/m) �

where x and z are in meters. Determine:

(a) E,

(b) the displacement current density Jd, and

(c) the charge density ρv.

Solution:
(a)

H � ŷ6cos 2zsin
�
2 � 107t � 0  1x ��� ŷ6cos 2zcos

�
2 � 107t � 0  1x � π � 2 � ��

H � ŷ6cos 2z e � j0 � 1xe � jπ � 2 � � ŷ j6cos 2z e � j0 � 1x �
�
E � 1

jωε
∇ � � � �H

� 1
jωε ������

x̂ ŷ ẑ
∂ � ∂x ∂ � ∂y ∂ � ∂z

0 � j6cos 2z e � j0 � 1x 0
������� 1

jωε

�
x̂

�
� ∂

∂z

� � j6cos 2z e � j0 � 1x � � 	 ẑ

�
∂
∂x

� � j6cos 2z e � j0 � 1x � � �
� x̂

�
� 12

ωε
sin2z e � j0 � 1x 
 	 ẑ

�
j0  6
ωε

cos 2z e � j0 � 1x 
 
From the given expression for H,

ω � 2 � 107 (rad/s) �
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β � 0  1 (rad/m) 
Hence,

up � ω
β
� 2 � 108 (m/s) �

and

εr � �
c
up

 2 � �

3 � 108

2 � 108 
 2 � 2  25 
Using the values for ω and ε, we have
�
E � � � x̂30sin 2z 	 ẑ j1  5cos 2z ��� 103e � j0 � 1x (V/m) �
E � � � x̂30sin 2zcos

�
2 � 107t � 0  1x � � ẑ1  5cos 2zsin

�
2 � 107t � 0  1x � � (kV/m) 

(b)
�
D � ε

�
E � εrε0

�
E � � � x̂0  6sin 2z 	 ẑ j0  03cos 2z ��� 10 � 6e � j0 � 1x (C/m2) �

Jd � ∂D
∂t

�
or
�
Jd � jω

�
D � � � x̂ j12sin 2z � ẑ0  6cos 2z � e � j0 � 1x �

Jd � ��� � �Jde jωt �� �
x̂12sin 2zsin

�
2 � 107t � 0  1x � � ẑ0  6cos 2zcos

�
2 � 107t � 0  1x � � (A/m2) 

(c) We can find ρv from
∇ � D � ρv

or from

∇ � J � � ∂ρv

∂t


Applying Maxwell’s equation,

ρv � ∇ � D � ε∇ � E � εrε0

�
∂Ex

∂x 	 ∂Ez

∂z 

yields

ρv � εrε0

�
∂
∂x

� � 30sin 2zcos
�
2 � 107t � 0  1x ���

	 ∂
∂z

� � 1  5cos 2zsin
�
2 � 107t � 0  1x � � �� εrε0

� � 3sin 2zsin
�
2 � 107t � 0  1x � 	 3sin 2zsin

�
2 � 107t � 0  1x � � � 0 
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Problem 6.28 The transformer shown in the figure consists of a long wire
coincident with the z-axis carrying a current I � I0 cosωt, coupling magnetic energy
to a toroidal coil situated in the x–y plane and centered at the origin. The toroidal core
uses iron material with relative permeability µr, around which 100 turns of a tightly
wound coil serves to induce a voltage Vemf, as shown in the figure.

a

b

x

y

z

I

Vemf

c

N+

-

Iron core with µr

(a) Develop an expression for Vemf.

(b) Calculate Vemf for f � 60 Hz, µr � 4000, a � 5 cm, b � 6 cm, c � 2 cm, and
I0 � 50 A.

Solution:
(a) We start by calculating the magnetic flux through the coil, noting that r, the

distance from the wire varies from a to b

Φ � �
S

B � ds � � b

a
x̂

µI
2πr

� x̂c dr � µcI
2π

ln

�
b
a 


Vemf � � N
dΦ
dt

� � µcN
2π

ln

�
b
a 
 dI

dt

� µcNωI0

2π
ln

�
b
a 
 sin ωt (V) 
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(b)

Vemf � 4000 � 4π � 10 � 7 � 2 � 10 � 2 � 100 � 2π � 60 � 50ln
�
6 � 5 �

2π
sin 377t� 5  5sin 377t (V) 

Problem 6.29 In wet soil, characterized by σ � 10 � 2 (S/m), µr � 1, and εr � 36,
at what frequency is the conduction current density equal in magnitude to the
displacement current density?

Solution: For sinusoidal wave variation, the phasor electric field is

E � E0e jωt 
Jc � σE � σE0e jωt

Jd � ∂D
∂t

� ε
∂E
∂t

� jωεE0e jωt

����
Jc

Jd ����
� 1 � σ

ωε
� σ

2πε f

or

f � σ
2πε

� 10 � 2

2π � 36 � 8  85 � 10 � 12 � 5 � 106 � 5 MHz 
Problem 6.30 In free space, the magnetic field is given by

H � φ̂φφ
36
r

cos
�
6 � 109t � kz � (mA/m) 

(a) Determine k.

(b) Determine E.

(c) Determine Jd.

Solution:
(a) From the given expression, ω � 6 � 109 (rad/s), and since the medium is free

space,

k � ω
c
� 6 � 109

3 � 108 � 20 (rad/m) 
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(b) Convert H to phasor:

�
H � φ̂φφ

36
r

e � jkz (mA/m)

�
E � 1

jωε0
∇ � �H

� 1
jωε0

�
� r̂

∂Hφ

∂z 	 ẑ
1
r

∂
∂r

�
rHφ � �

� 1
jωε0

�
� r̂

∂
∂z

�
36
r

e � jkz 
 	 ẑ
r

∂
∂r

�
36e � jkz � �

� 1
jωε0

�
r̂

j36k
r

e � jkz �
� r̂

36k
ωε0r

e � jkz � r̂
36 � 377

r
e � jkz � 10 � 3 � r̂

13  6
r

e � j20z (V/m) 
E � ��� � �Ee jωt �
� r̂

13  6
r

cos
�
6 � 109t � 20z � (V/m) 

(c)

Jd � ε0
∂E
∂t� r̂

13  6
r

ε0
∂
∂t

�
cos

�
6 � 109t � 20z � �

� � r̂
13  6ε0 � 6 � 109

r
sin

�
6 � 109t � 20z � (A/m2)

� � r̂
0  72

r
sin

�
6 � 109t � 20z � (A/m2) 




