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Chapter S: Magnetostatics

Lesson #30
Chapter — Section: 5-1

Topics: Magnetic forces and torques

Highlights:

e Lorentz force on a charged particle
e Magnetic force on a current in a magnetic field
e Torque on a loop

Special Illustrations:
e Examples 5-1
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Lesson #31
Chapter — Section: 5-2
Topics: Biot-Savart law

Highlights:

e Magnetic field induction by electric currents
e Magnetic field due to linear conductor
e Magnetic dipole

Special Illustrations:

e Example 5-2
e Example 5-3
e (CD-ROM Modules 5.3 and 5.4

Module 5.3: Field at Center of a Square

In example 5-2 in the text, it was shown that the

f— [ —] magnetic flux density at a distance r from the
- midpoint of a conductor of length [/ is:
1 - B=uH=p_ Ho (T) (5.29)
- Pt 27/ Are 12 - -
v Q. Use the above result to determine B at the center

of a square of sides [.

“eet) B =0

Gee) B = iZ\/E,uoI/:t!
) B=—Z 2\/5,&01/7:!
Geec) B = i\/iuoffﬁn:!

[t
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Lesson #32
Chapter — Section: 5-3, 5-4
Topics: Magnetic force, Ampere’s law

Highlights:
e Attraction and repulsion forces between currents

e Gauss’s law for magnetics
e Ampere’s law

Special Illustrations:

e Example 5-6
e CD-ROM Modules 5.1 and 5.2

Module 5.2: Wire Next to a Loop

1 Given: A wire loop lies in the same plane as an infinitely long
! wire. Initially, neither wire is carrying a current.
———— Q1. If ;=0 and a current /5 is made to flow through the loop

in the direction shown, what will happen to the loop?

"_select \ MNothing.

"_select \ It will try to expand.

£ N .
[ select | It will contract.

I;

Q2. If in addition to f3, a strong current /) is made to flow

through the linear wire, what is likely to happen to the

loop?

(‘select | Naothing.

'r_select ‘ It will try to expand.

£ N -
| select | It will contract.
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Lesson #33
Chapter — Section: 5-5, 5-6

Topics: Vector magnetic potential, magnetic materials

Highlights:
e Relationof Ato B
e Vector Poisson’s Eq.
e Magnetic permeability
e Ferromagnetism, hysteresis

Special Illustrations:

e Technology Brief on “Electromagnetic and magnetic switches” (CD-ROM)

Electromagnets and Magnetic Relays

William Sturgeon developed the first practical electromagnet in the 1820s. Today the principle of
the electromagnet is used in motors, relay switches in read/write heads for hard disks and tape
drives, loudspeakers, magnetic levitation and many other applications.

Basic Principle

Electromagnets can be constructed in various shapes,
including the linear solenoid described in Section 5-8.1.
When an electric current generated by a power source,
such as a battery, flows through the wire coiled around
the central core, it induces a magnetic field with field
lines resembling those generated by a bar magnet (Al).
The strength of the magnetic field is proportional to the
current, the number of turns, and the magnetic
permeability of the core material. By using a
ferromagnetic core, the field strength can be increased
by several orders of magnitude, depending on the purity
of the iron material. When subjected to a magnetic
field, ferromagnetic materials, such as iron or nickel,
get magnetized and act like magnets themselves.
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Lesson #34
Chapter — Section: 5-7
Topics: Boundary conditions

Highlights:

e Analogy with electric-field boundary conditions

Special Illustrations:
e Technology Brief on “Magnetic Recording” (CD-ROM)

Magnetic Recording

Valdemar Poulsen, a Danish engineer, invented magnetic recording by demonstrating in 1900 that
speech can be recorded on a thin steel wire using a simple electromagnet. Magnetic tapes were
developed as an alternative medium to wires in the 1940s and became very popular for recording
and playing music well into the 1960s. Videotapes were introduced in the late 1950s for
recording motion pictures for later replay on television. Because video signals occupy a much
wider bandwidth, tape speeds for video recording (past the magnetic head) have to be at rates on
the order of 5 m/s, compared with only 0.3 m/s for audio. Other types of magnetic recording
media were developed since then, including the flexible plastic disks called “floppies,” the hard
disks made of glass or aluminum, the magnetic drum, and the magnetic bubble memory. All take
advantage of the same fundamental principle of being able to store electrical information through
selective magnetization of a magnetic material, as well as the ability to retrieve it (playback)
when so desired.
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Lesson #35
Chapter — Section: 5-8
Topics: Inductance

Highlights:

e Solenoid
e Self inductance

Special Illustrations:

e Example 5-8
e Technology Brief on “Inductive Sensors” (CD-ROM)

Inductive Sensors

Magnetic coupling between different coils forms the basis of several different types of inductive
sensors. Applications include the measurement of position and displacement (with sub-millimeter
resolution) in device fabrications processes, proximity detection of conductive objects, and other
related applications.

Linear Variable Differential Transformer (LVDT)

A LVDT comprises a primary coil connected to an
ac source, typically a sine wave at a frequency in
the 1-10 KHz range, and a pair of secondary coils,
all sharing a common ferromagnetic core (A1).
The magnetic core serves to couple the magnetic

flux generated by the primary coil into the two PUSH ROD

secondaries, thereby inducing an output voltage e _W
across each of them. The secondary coils are
connected in opposition, so that when the core is
positioned at the magnetic center of the LVDT, the
individual output signals of the secondaries cancel S BREECOIES
each other out, producing a null output voltage.
The core is connected to the outside world via a - Voutl +
nonmagnetic rod. When the rod moves the core

away from the magnetic center, the magnetic A1. LVDT circuit

fluxes induced in the secondary coils are no longer

equal, resulting in a non-zero output voltage. The

LVDT is called a “linear” transformer because the

output voltage is a linear function of displacement

over a wide operating range.




Lesson #36
Chapter — Section: 5-9
Topics: Magnetic energy

Highlights:

e Magnetic energy density
e Magnetic energy in a coax

Special Illustrations:

e Example 5-9

239



240 CHAPTER S5

Chapter 5

Sections 5-1: Forces and Torques

Problem 5.1 An electron with a speed of 8 x 106 m/s is projected along the
positive x-direction into a medium containing a uniform magnetic flux density
B = (%4 —23) T. Given that e = 1.6 x 1071° C and the mass of an electron is
me = 9.1 x 103! kg, determine the initial acceleration vector of the electron (at the
moment it is projected into the medium).

Solution: The acceleration vector of a free particle is the net force vector divided by
the particle mass. Neglecting gravity, and using Eq. (5.3), we have

= e~ m U ¥ B= g xro-a

= —y4.22 x 10 (m/s?).

Fo  — _1.6x1071 o
a—-m__° X %8 x 106) x (%4 — 23)

Problem 5.2 When a particle with charge g and mass m is introduced into a medium
with a uniform field B such that the initial velocity of the particle u is perpendicular
to B, as shown in Fig. 5-31 (P5.2), the magnetic force exerted on the particle causes it
to move in a circle of radius a. By equating Fn, to the centripetal force on the particle,
determine a in terms of g, m, u, and B.

Solution: The centripetal force acting on the particle is given by F. = mu?/a.

Figure P5.2: Particle of charge q projected with velocity u into a medium with a
uniform field B perpendicular to u (Problem 5.2).
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Equating F; to Fr, given by Eq. (5.4), we have mu?/a = quBsin 6. Since the magnetic
field is perpendicular to the particle velocity, sin® = 1. Hence, a = mu/qB.

Problem 5.3 The circuit shown in Fig. 5-32 (P5.3) uses two identical springs to
support a 10-cm-long horizontal wire with a mass of 20 g. In the absence of a
magnetic field, the weight of the wire causes the springs to stretch a distance of
0.2 cm each. When a uniform magnetic field is turned on in the region containing the
horizontal wire, the springs are observed to stretch an additional 0.5 cm. What is the
intensity of the magnetic flux density B? The force equation for a spring is F = kd,
where Kk is the spring constant and d is the distance it has been stretched.

40 12V

/Spri ngs\
2 =

®© [®© ® @ oB

© [© © o ©
10cm

Figure P5.3: Configuration of Problem 5.3.

Solution: Springs are characterized by a spring constant k where F = kd is the
force exerted on the spring and d is the amount the spring is stretched from its rest
configuration. In this instance, each spring sees half the weight of the wire:

~mg 20x10°3x9.38

=20~ 2x2xio3 29 (Nm).

F= %mg =kd, k
Therefore, when the springs are further stretched by an additional 0.5 cm, this
amounts to an additional force of F =49 N/m x (5 x 1073 m) = 245 mN per spring,
or a total additional force of F = 0.49 N. This force is equal to the force exerted
on the wire by the interaction of the magnetic field and the current as described by
Eq. (5.12): F, = 1£x B, where £ and B are at right angles. Moreover £ x B is in the
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downward direction, and | =V /R =12 V/4 Q = 3 A. Therefore,

_ [Fml _ 049 _ ) g (M.

Fonl = [1][€]|B Bl = = a0 =
ol = 1118, 18] = 11 = 501

Problem 5.4 The rectangular loop shown in Fig. 5-33 (P5.4) consists of 20 closely
wrapped turns and is hinged along the z-axis. The plane of the loop makes an
angle of 30° with the y-axis, and the current in the windings is 0.5 A. What
is the magnitude of the torque exerted on the loop in the presence of a uniform
field B = 92.4 T? When viewed from above, is the expected direction of rotation
clockwise or counterclockwise?

z
A
—_ \HO.SA
04m /20 turns
30° =Y
0.2m>

X

Figure P5.4: Hinged rectangular loop of Problem 5.4.

Solution: The magnetic torque on a loop is given by T =m x B (Eq. (5.20)), where
m = ANIA (Eqg. (5.19)). For this problem, itis given that | = 0.5 A, N = 20 turns, and
A=0.2mx 0.4 m=0.08 m?. From the figure, A = —Xcos30° +¥sin30°. Therefore,
m =A0.8 (A-m?) and T = 0.8 (A-m?) x 2.4 T = —21.66 (N-m). As the torque is
negative, the direction of rotation is clockwise, looking from above.

Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire carrying
a current of 5 A in the positive z-direction is located at r = 4 cm, @ = 11/2, and
—Im<z<lm.

(@) IfB=1t0.2cos@ (T), what is the magnetic force acting on the wire?
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5A

Figure P5.5: Problem 5.5.

(b) How much work is required to rotate the wire once about the z-axis in the
negative @-direction (while maintaining r = 4 cm)?
(c) Atwhat angle @is the force a maximum?

Solution:
(@)
F=1£xB
=522 % [f0.2cos @)
= (2COS .

At @=T1/2, @= —X. Hence,
F = —X2cos(1/2) = 0.
(b)

21

21 . R
W= F-dI:/ Q[2cos @ -(—@)rdo
=0 0

r=4cm

= —8x 10~ 2[sin@Z" = 0.

r=4cm

2n
:—Zr/ cospdq
0

The force is in the +¢-direction, which means that rotating it in the —@-direction
would require work. However, the force varies as cos@, which means it is positive
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when —11/2 < @ < 11/2 and negative over the second half of the circle. Thus, work
is provided by the force between ¢ = 1/2 and @ = —11/2 (when rotated in the
—(i}direction), and work is supplied for the second half of the rotation, resulting in a
net work of zero.

(c) The force F is maximum when cos@= 1, or ¢=0.

Problem 5.6 A 20-turn rectangular coil with side | =20 cm and w = 10 cm s
placed in the y—z plane as shown in Fig. 5-34 (P5.6).

z
A )
I 20-turn coil
// \\
e !
1o !
Y~ - - I
I -1~ - I
(| 1
| Al |
1 1
1 ' 1
I PR N 1
1 Sl
|’/ \q
[ 7 > Y
\
A AT

Figure P5.6: Rectangular loop of Problem 5.6.

(a) If the coil, which carries a current I = 10 A, is in the presence of a magnetic
flux density
B=2x10"2(8+92) (T),
determine the torque acting on the coil.
(b) Atwhat angle @ is the torque zero?
(c) Atwhat angle @is the torque maximum? Determine its value.
Solution:
(@) The magnetic field is in direction (X + §2), which makes an angle
@ =tan~12 =63.43°.
The magnetic moment of the loop is

m=ANIA=A20x 10 (30x 10) x 1074 =6 (A-m2),
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Figure P5.6: (a) Direction of B.

where 1 is the surface normal in accordance with the right-hand rule. When the loop
is in the negative-y of the y—z plane, f is equal to X, but when the plane of the loop is
moved to an angle ¢, 1 becomes

= Xcos@+ ysing,

A
T=mxB=A6x2x10"2(X+92)

A

= (XCos @+ 9sing) 6 x 2 x 1072(X +92)
=20.12[2cos @—sing (N-m).

(b) The torque is zero when
2cos@—sin@=0,

or
tanp=2, (©=63.43° or —116.57°.

Thus, when i is parallel to B, T = 0.
(c) The torque is a maximum when 1 is perpendicular to B, which occurs at

@=63.43+90° = —26.57° or +153.43°.

Mathematically, we can obtain the same result by taking the derivative of T and
equating it to zero to find the values of @at which |T| is a maximum. Thus,
oT 0

90 = g (0 12(2c0s0—sing) =0
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or
—2sin@+cos@= 0,

which gives tang= —3, or

(= —26.57° or 153.43°,

at which T =20.27 (N-m).

Section 5-2: Biot—Savart Law

Problem 5.7 An 8 cm x 12 cm rectangular loop of wire is situated in the x-y
plane with the center of the loop at the origin and its long sides parallel to the x-axis.
The loop has a current of 50 A flowing with clockwise direction (when viewed from
above). Determine the magnetic field at the center of the loop.

Solution: The total magnetic field is the vector sum of the individual fields of each
of the four wire segments: B = B; + B, + B3+ B4. An expression for the magnetic
field from a wire segment is given by Eq. (5.29).

z

4

4
-6 cm /@
4

e
4
4 @ |
4
v

4 cm

Figure P5.7: Problem 5.7.

For all segments shown in Fig. P5.7, the combination of the direction of the current
and the right-hand rule gives the direction of the magnetic field as —z direction at the
origin. Withr =6 cmand | =8 cm,

A il
27
21/ 4r? + 12
. 4mx107"x50x0.08

=-2
211 0.06 X /4 x 0.062 4 0.082

Bi=—

——29.24%x10"° (T).
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For segment 2, r =4 cmand | = 12 cm,

B— 2 M
/T
. 4mx 107" x50 x0.12 .
— _p ATXD XX — _520.80x 1075 (T).
211%x 0.04 x v/4 x 0.042 +0.122
Similarly,

Bs=—-29.24x10"° (T), Bs=—-220.80x10"% (T).

The total field is then B=B;+ B>+ B3+ B4y = —70.60 (mT).

Problem 5.8 Use the approach outlined in Example 5-2 to develop an expression
for the magnetic field H at an arbitrary point P due to the linear conductor defined by
the geometry shown in Fig. 5-35 (P5.8). If the conductor extends between z; =3 m
and z, = 7 m and carries a current | = 15 A, find H at P(2,¢,0).

3] \
P1(z1) 3 1 R

r P(r. ¢.2)

Figure P5.8: Current-carrying linear conductor of Problem 5.8.

Solution: The solution follows Example 5-2 up through Egq. (5.27), but the
expressions for the cosines of the angles should be generalized to read as
coselzi, cos0, = -
r2+(Z—Zl)2 r2+(2—22)2
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instead of the expressions in Eq. (5.28), which are specialized to a wire centered at
the origin. Plugging these expressions back into Eg. (5.27), the magnetic field is
given as

For the specific geometry of Fig. P5.8,

~ 15 [ 0-3 0-7

— _ _ ~ _3 _ ~
H= ¢41T>< 232522 72 _|_22:| @77.4x107° (A/m) =@77.4 (mA/m).

Problem 5.9 The loop shown in Fig. 5-36 (P5.9) consists of radial lines and
segments of circles whose centers are at point P. Determine the magnetic field H
atPintermsofa, b, 6,and I.

AN

l—a—|P

Figure P5.9: Configuration of Problem 5.9.

Solution: From the solution to Example 5-3, if we denote the z-axis as passing out
of the page through point P, the magnetic field pointing out of the page at P due to
the current flowing in the outer arc is Houer = —218/41b and the field pointing out
of the page at P due to the current flowing in the inner arc is Hiner = 210/418a. The
other wire segments do not contribute to the magnetic field at P. Therefore, the total
field flowing directly out of the page at P is

16 (1 1>:2M_

H = Houter + Hipner = Z2—— 2 b 418h

41t

Problem 5.10 An infinitely long, thin conducting sheet defined over the space
0<x<wand —o <y < o s carrying a current with a uniform surface current
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IR = vVx2+ 22

A
Y

Figure P5.10: Conducting sheet of width w in x-y plane.

density Js = §5 (A/m). Obtain an expression for the magnetic field at point P(0,0,z)
in Cartesian coordinates.

Solution: The sheet can be considered to be a large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
Iy = Jsdx. The wire at a distance x from the origin is at a distance vector R from

point P, with
R = —Xx+2z.

Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current | as

_B_9

Mo 2m’
We now need to adapt this expression to the present situation by replacing | with
Iy = Jsdx, replacing r with R = (x?4-z2)%/2, as shown in Fig. P5.10, and by assigning
the proper direction for the magnetic field. From the Biot-Savart law, the direction
of H is governed by | x R, where | is the direction of current flow. In the present case,
| is in the ¥ direction. Hence, the direction of the field is

IxR  yx(—Xx+2z) Xz + 2

IXR| |gx (—%x+2z)] (x24+22)1/2°
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Therefore, the field dH due to the current Iy is

dH — X2+2x Iy (RXz+2x)Jsdx

(x2+z22)Y2 2R~ 2m(x2+22) ’

and the total field is

Jsdx

H(0,0,z) = /X(xz+zx)2(

X2 + 2?)
W

Z+ZX 22

S,
(X X= oX2 2/x oX;(—-I—XZZ)
( ( tan™ 1( )) (3In(x®+z ))|WO>

[x2ntan_1( ) +23(In(w?+2%) —1In (O+22))] for z #0,
[xZntan 1 (g) +231In (g)] (AIm) forz#0.

An alternative approach is to employ Eq. (5.24a) directly.

':\:’|01 ':\:’|01 ':\:’|<5‘ Eﬂm ':\:’I

Problem 5.11 An infinitely long wire carrying a 25-A current in the positive
x-direction is placed along the x-axis in the vicinity of a 20-turn circular loop located
in the x-y plane as shown in Fig. 5-37 (P5.11(a)). If the magnetic field at the center
of the loop is zero, what is the direction and magnitude of the current flowing in the
loop?

Iy

Figure P5.11: (a) Circular loop next to a linear current (Problem 5.11).

Solution: From Eq. (5.30), the magnetic flux density at the center of the loop due to
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@)

Figure P5.11: (b) Direction of I.

the wire is ™
Bi1=2_—1
1 ord -
where Z is out of the page. Since the net field is zero at the center of the loop, 1o must
be clockwise, as seen from above, in order to oppose I;. The field due to I, is, from

Eq. (5.35),

B=poH=—2 ”02'\:2 .
Equating the magnitudes of the two fields, we obtain the result
NIz Iy
2a  2m’
or
L 2aly 1x25 _02A

T 2mNd  Tix20x2

Problem 5.12 Two infinitely long, parallel wires carry 6-A currents in opposite
directions. Determine the magnetic flux density at point P in Fig. 5-38 (P5.12).

L11=6A Y12=6A

0.5m

2m

Figure P5.12: Arrangement for Problem 5.12.

Solution:

_ .~ kol & Hol2 ~Ho _~ 8o
B _(p2n(0.5) Jr([,21'[(1.5) =% (6+2)=0 Tt (T-
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Problem 5.13 A long, East-West oriented power cable carrying an unknown
current | is at a height of 8 m above the Earth’s surface. If the magnetic flux density
recorded by a magnetic-field meter placed at the surface is 15 uT when the current is
flowing through the cable and 20 uT when the current is zero, what is the magnitude
of 1?

Solution: The power cable is producing a magnetic flux density that opposes Earth’s,
own magnetic field. An East-West cable would produce a field whose direction at
the surface is along North—South. The flux density due to the cable is

B = (20— 15) pT = 5yT.

As a magnet, the Earth’s field lines are directed from the South Pole to the North
Pole inside the Earth and the opposite on the surface. Thus the lines at the surface are
from North to South, which means that the field created by the cable is from South
to North. Hence, by the right-hand rule, the current direction is toward the East. Its
magnitude is obtained from

_ Hol _ 4mx 10771

5uT=5x106="2" _“"2°* ~
HE=ox od - 2mix8

which gives | = 200 A.

Problem 5.14 Two parallel, circular loops carrying a current of 40 A each are
arranged as shown in Fig. 5-39 (P5.14). The first loop is situated in the x—y plane
with its center at the origin and the second loop’s center is at z=2 m. If the two
loops have the same radius a = 3 m, determine the magnetic field at:

(@ z=0,
(b) z=1m,
() z=2m.

Solution: The magnetic field due to a circular loop is given by (5.34) for a loop in
the x-y plane carrying a current | in the +¢-direction. Considering that the bottom
loop in Fig. P5.14 is in the x—y plane, but the current direction is along —@,

5 la?
2(a2+2)32°
where z is the observation point along the z-axis. For the second loop, which is at a

height of 2 m, we can use the same expression but z should be replaced with (z— 2).
Hence,

Hy=—

1a2

Hy=—2 .
2= T R (2272
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X

Figure P5.14: Parallel circular loops of Problem 5.14.

The total field is

H = ot Hp— 22 L L
-t = 2 |(@2+122)32 " [a2+ (z—2)232

(@ Atz=0,andwitha=3mand | =40 A,

| am.

. 40x9
_Z—

H=
2

1 1 o
|:¥ + W] =—-710.5 A/m.

(b) Atz =1 m (midway between the loops):

H_ _ 5%0x9 11
B 2 [(9+1)%2  (9+1)32

(c) Atz =2 m, H should be the same as at z = 0. Thus,

] =—711.38 A/m.

H=-210.5 A/m.

Section 5-3: Forces between Currents

Problem 5.15 The long, straight conductor shown in Fig. 5-40 (P5.15) lies in the
plane of the rectangular loop at a distance d = 0.1 m. The loop has dimensions
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b=0.5m

| |
d=01m ! a=0.2m !

Figure P5.15: Current loop next to a conducting wire (Problem 5.15).

a=0.2mand b= 0.5m, and the currents are I; = 20 A and I, = 30 A. Determine
the net magnetic force acting on the loop.

Solution: The net magnetic force on the loop is due to the magnetic field surrounding
the wire carrying current 1. The magnetic forces on the loop as a whole due to the
current in the loop itself are canceled out by symmetry. Consider the wire carrying
I1 to coincide with the z-axis, and the loop to lie in the +x side of the x-z plane.
Assuming the wire and the loop are surrounded by free space or other nonmagnetic
material, Eq. (5.30) gives

_plols
B=¢ o
In the plane of the loop, this magnetic field is

~ Hol1

2T

Then, from Eq. (5.12), the force on the side of the loop nearest the wire is

— _ 5 AUO_ll _ _,\U0|1|2b
Fmi = 12€ x B = I5(Zb) x <y2m> X:d— X ord
The force on the side of the loop farthest from the wire is
. ~ Hol1 . Hol1l2b
F2=|2£XB=|2—ZbX(y—> =X——"
; ( ) 2TX x=a+d 2n(a + d)
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The other two sides do not contribute any net forces to the loop because they are
equal in magnitude and opposite in direction. Therefore, the total force on the loop is

F= le+ I:m2
_)A(Llo|1|2b - Holil2b
2md 2m(a+d)
. Ho|1|2ab
- "2md(a+d)
-7
_ _)24n>< 107" %x20x30x0.2x 0.5 — %04 (mN).

211%x 0.1 % 0.3
The force is pulling the loop toward the wire.

Problem 5.16 In the arrangement shown in Fig. 5-41 (P5.16), each of the two long,
parallel conductors carries a current I, is supported by 8-cm-long strings, and has a
mass per unit length of 1.2 g/cm. Due to the repulsive force acting on the conductors,
the angle 8 between the supporting strings is 10°. Determine the magnitude of | and
the relative directions of the currents in the two conductors.

Figure P5.16: Parallel conductors supported by strings (Problem 5.16).

Solution: While the vertical component of the tension in the strings is counteracting
the force of gravity on the wires, the horizontal component of the tension in the strings
is counteracting the magnetic force, which is pushing the wires apart. According
to Section 5-3, the magnetic force is repulsive when the currents are in opposite
directions.

Figure P5.16(b) shows forces on wire 1 of part (a). The quantity F’ is the tension
force per unit length of wire due to the mass per unit length m’ = 1.2 g/cm = 0.12
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kg/m. The vertical component of F’ balances out the gravitational force,

R/ =mg, (19)
where g = 9.8 (m/s?). But
F, = F'cos(8/2). (20)
Hence,
m'g
I_
~ cos(8/2) 1)

The horizontal component of F’ must be equal to the repulsion magnitude force given
by Eq. (5.42):

r_ ol 2 o Hol?
0= o = 2m{2¢sin(8/2)]

(22)

where d is the spacing between the wires and £ is the length of the string, as shown
in Fig. P5.16(c). From Fig. 5.16(bh),

HZF@MWQZ&ﬁgzﬂMW3=Wmmwﬁ) (23)

Equating Egs. (22) and (23) and then solving for I, we have

avm'g sin5e 411 0.08 X 0.12 X 9.8
HoCos(8/2) 41X 107 cos5°

I =sin(6/2) =848 (A).

Problem 5.17 An infinitely long, thin conducting sheet of width w along the
x-direction lies in the x-y plane and carries a current I in the —y-direction. Determine
(a) the magnetic field at a point P midway between the edges of the sheet and at a
height h above it (Fig. 5-42 (P5.17)), and then (b) determine the force per unit length
exerted on an infinitely long wire passing through point P and parallel to the sheet
if the current through the wire is equal in magnitude but opposite in direction to that
carried by the sheet.

Solution:
(a) The sheet can be considered to consist of a large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
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" dp
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I w I

Figure P5.17: A linear current source above a current sheet (Problem 5.17).

Ix = 1dx/w. If we choose the coordinate system shown in Fig. P5.17, the wire at a
distance x from the origin is at a distance vector R from point P, with

R = —Xx+ zh.

Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current | as

B -~ 1
He = —@p—.
Ho 21r

We now need to adapt this expression to the present situation by replacing | with
Iy = 1dx/w, replacing r with R = (x? 4 h?)1/2, and by assigning the proper direction
for the magnetic field. From the Biot-Savart law, the direction of H is governed by
I x R, where | is the direction of current flow. In the present case, | is out of the page,
which is the —¥ direction. Hence, the direction of the field is

IxR —§ % (—Xx+zh) —(Xh+ 2x)

IXR| ~ [—9x (—&x+2h)|  (@+h2)2’

Therefore, the field dH due to current Iy is

dH = —(%h+2x) Iy —(Xh+2x)ldx
T (®4+h2)Y/22mR T 2rw(x24-h2)
and the total field is
w/2 - 1 dx
H(0,0,h) — /X oy R
- Kh + 2X) ———
2T|.\N X:*W/Z(X +ZX) X2+h2

_ oh w/2 dx L (W2 xdx
o ﬁ X /x:w/z X2+h2+z/xzw/2 X2 4+ h2
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= (.. (1, _q/X%

= Zrw (Xh (Hta” (ﬁ))

oW

= —xmtan <%) (A/m).
At P in Fig. P5.17, the field is pointing to the left. The z-component could have
been assumed zero with a symmetry argument. An alternative solution is to employ
Eq. (5.24a) directly.

(b) From Eq. (5.9), a differential force is of the form dF,, = I dl x B or, assuming

dl = &, d/, the force per unit length is given by

oF . . Mol /W Auolz A
! m 1 1
Fmn= 5 = Gy xB=1yx (—x—tan <_2h)> =2——tan (_2h> (N).

w/2 w2
+2(3In(+h) [0,
Xx=—w/2

The force is repulsive; the wire is experiencing a force pushing it up.

Problem 5.18 Three long, parallel wires are arranged as shown in Fig. 5-43
(P5.18(a)). Determine the force per unit length acting on the wire carrying |3.

- ® 1,=10A

-+ F—2m——® 1;=10A

— ©® 1,=10A

Figure P5.18: (a) Three parallel wires of Problem 5.18.

Solution: Since I; and I, are equal in magnitude and opposite in direction, and
equidistant from I3, our intuitive answer might be that the net force on I3 is zero. As
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T l1 into the page (¥)

l1

Fa1
Fz
o X » X
4
i
e 3

Figure P5.18: (c) Forces acting on 3.

we will see, that’s not the correct answer. The field due to 1, (which is along §) at

location of I3 is
L
Bi=b; —
1 12T[R1

where 61 is the unit vector in the direction of B1 shown in the figure, which is
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perpendicular to R1. The force per unit length exerted on |3 is

; _ bolals o w0 & Holils
17 R, (yxb1)=—Ry IR,

Similarly, the force per unit length excited on I3 by the field due to I, (which is
along —V) is
~ Holzls
F =R .

32 2R,
The two forces have opposite components along X and equal components along 2.
Hence, with R; = R, = v/8 mand 8 = sin™1(2/+/8) = sin"1(1/v/2) = 45°,

. I11 Il .
=] :Ffa,l—I—ng:Z(UO13+UO23>sm6

2TR;  2TR>
-7
:22(4HX10 ><1OXZO)><i:22><10_5N/m.
2Ttx /8 V2

Problem5.19 A square loop placed as shown in Fig. 5-44 (P5.19) has 2-m sides and
carries a current I =5 A. If a straight, long conductor carrying a current I, =10 A is
introduced and placed just above the midpoints of two of the loop’s sides, determine
the net force acting on the loop.

X

Figure P5.19: Long wire carrying current I, just above a square loop carrying I¢
(Problem 5.19).

Solution: Since |5 is just barely above the loop, we can treat it as if it’s in the same
plane as the loop. For side 1, I; and I, are in the same direction, hence the force on
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side 1 is attractive. That is,

- Molilpa  _4mx107"x5x10x2 5
Fr— = =92x10°N.
=Y oma2) ~ 7 27X 1 yex

I1 and I, are in opposite directions for side 3. Hence, the force on side 3 is repulsive,
which means it is also along . That is, F3 = F;.
The net forces on sides 2 and 4 are zero. Total net force on the loop is

F=2F1=94x10°N.

Section 5-4: Gauss’s Law for Magnetism and Ampeére’s Law

Problem 5.20 Current I flows along the positive z-direction in the inner conductor
of a long coaxial cable and returns through the outer conductor. The inner conductor
has radius a, and the inner and outer radii of the outer conductor are b and c,
respectively.
(a) Determine the magnetic field in each of the following regions: 0 <r < a,
a<r<b b<r<c,andr>c.
(b) Plot the magnitude of H as a function of r over the range from r = 0 to
r=10cm, giventhat | =10 A,a=2cm,b=4cm, and c=5cm.

Solution:
(a) Following the solution to Example 5-5, the magnetic field in the region r < a,

~ rl
A=

and in the regiona <r < b,
H= S
=P

The total area of the outer conductor is A = 1i(c? — b?) and the fraction of the area
of the outer conductor enclosed by a circular contour centered at r = 0 in the region
b<r<cis

m(r’—b?) r?—p?

mc2—b?) c2—b?’

The total current enclosed by a contour of radius r is therefore

rz_bz Cz_rz
|enc|o%d =1{1- m

2_p2’
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and the resulting magnetic field is

~ 1 [c2—r?
—_ " = (p— > 1o |-
21 21r \c’—b
For r > c, the total enclosed current is zero: the total current flowing on the inner
conductor is equal to the total current flowing on the outer conductor, but they are

flowing in opposite directions. Therefore, H = 0.
(b) See Fig. P5.20.

0.8 [
0.7
06
05
04}
03

0.2 F

Magnetic field magnitude H (A/cm)

0.1Ff

0.0

6. 7. 8. 9. 10

Radial distance r (cm)

Figure P5.20: Problem 5.20(b).

Problem 5.21 A long cylindrical conductor whose axis is coincident with the z-axis
has a radius a and carries a current characterized by a current density J = 2Jo/r,
where Jg is a constant and r is the radial distance from the cylinder’s axis. Obtain an
expression for the magnetic field H for (a) 0 <r <aand (b) r > a.

Solution: This problem is very similar to Example 5-5.
(a) For 0 <r; < a, the total current flowing within the contour C1 is

2 prp 2J0 . ry
Ilz//J-ds:/ / (—)-(zrdrdcp):ZTt/ Jodr = 211 Jp0.
@e=0Jr=0\ T r=0
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Therefore, since 11 = 21r1H;, Hy = Jo within the wire and H1 = @o-
(b) For r > a, the total current flowing within the contour is the total current flowing
within the wire:

2n ra ZJO a
I://J-ds:/ / (—)-(irdrd(p)zzn/ Jodr = 2m@aJo.
@e=0Jr=0 \ I r=0

Therefore, since | = 2rrH,, Hy = Joa/r within the wire and H, = &)Jo(a/r).

Problem 5.22 Repeat Problem 5.21 for a current density J = ZJge™".

z
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wn
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1
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1
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1
1
1
1
1
\

v

<8}
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A}

1

1
7

4
1
[
1
1
\
\
.

Figure P5.22: Cylindrical current.

Solution:
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(a) Forr < a, Ampere’s law is

%H-dl:l:/\]-ds,
c S

~ ~ r r
(pH-(pZT[r:/ J-ds:/ 2Joe”" - 221w dr,
0 0
r
21rH :2T[Jo/ re "dr
0
= 21Jo[—e"(r+1)]p = 2mJo[l —e~"(r+ 1)].

Hence, ]
H:&)H:&)To[l—e_r(r-l—l)], forr <a.

(b) Forr > a,
21rH = 2mg[—e " (r+1)]3 = 2mo[1 — e 3(a+1)],
H=@H :cb‘]—ro [1-e3(@+1)], r>a

Problem 5.23 In a certain conducting region, the magnetic field is given in
cylindrical coordinates by

~4
H=g_[1- (1+3r)e 3.
Find the current density J.
Solution:
10 4
J=0OxH=2-—(r-—[1—(1+3r)e ™
% Zrar(r r[ (1+3n) ]>
1
=2- [126 % (14 2r) — 12e %] = 224e " AIm?.

Section 5-5: Magnetic Potential

Problem 5.24 With reference to Fig. 5-10, (a) derive an expression for the vector
magnetic potential A at a point P located at a distance r from the wire in the x-y plane,
and then (b) derive B from A. Show that your result is identical with the expression
given by Eq. (5.29), which was derived by applying the Biot-Savart law.
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Solution:
(a) From the text immediately following Eq. (5.65), that equation may take the
form

0/2
o 'dl':ﬁ/ L NP

4T[ YA RI 4T[ Z’:—Z/Z A /ZIZ_I_ r2

IJO 12 2 5/2

T 4m (zlln( e )>‘z’:—€/2

ol 0)241/(€)2)%+12
—fan"

—0)24\/(—£]2)*+r2

°|n L+ V02 +4r2
—t+VPxaz)

=

Z

5E
=

(b) From Eqg. (5.53),

B=0OxA
_ Ox uol In L4074+ 4r?
“an "\ Cea vt
—Auoliln L+ 02+ 4r2
dmor -\ —4 402+ 4r2
__~pol [ L+ V024 4r2 L+ V2 +4r2
Pan \ VA —t+P1ar2
_ ~pol €+\/£2+4r
Pan L+ aZ
y (( e+¢m)g_r(e+\/m)_(e+m)g_r(_e+\/m)>
(—0+ VP21 ar2)°
ool [ (L4 VE2+4r2) — (L+ V2 +4r?) Ar
Pan (—L+ V2 +4r2) (L + V2 +4r2) ) 12+ 4r?
~ ol (—24) 4r ~ UolZ
=—@— = T).
s\ @2 ) JZraz  VomyEyar (N

which is the same as Eqg. (5.29).

Problem 5.25 In a given region of space, the vector magnetic potential is given by
A =X5cosTy + 2(2 + sinTx) (Wb/m).
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(a) Determine B.

(b) Use Eq. (5.66) to calculate the magnetic flux passing through a square loop
with 0.25-m-long edges if the loop is in the x—y plane, its center is at the origin,
and its edges are parallel to the x- and y-axes.

(c) Calculate @ again using Eq. (5.67).

Solution:
(a) From Eg. (5.53), B = O x A = Z5115in Tly — YTTCOS TIX.
(b) From Eqg. (5.66),

0.125m 0.125m
dJ://B-ds:/ / (25msinTy — yTicos Tx) - (2 dx dy)
y=—0.125m Jx=—0.125m

cos 0.125
_ (—Snx ny)
M /lx=-0125/|,__g125

-7 (= (5) () o

(c) From Eq. (5.67), ® = % A-d£, where C is the square loop in the x-y plane with

0.125

C
sides of length 0.25 m centered at the origin. Thus, the integral can be written as
®= 7§:A' dé = Stront + Sback + Sieft + Srighta

where Stront, Sback: Sieft, and Syight are the sides of the loop.

0.125
St = [ (R5008Ty +2(2+ SInT))],__g.135°(R0)
X=—0.

0.125

x=—0.125
0.125 5 -7 5 TT
x=-0125 4 ( 8 ) 4 (8) ’

0.125
Sback:/ o2 (X5cosTy +2(2 +SINTX) )|y g 105 - (—X dX)
x=—0.

= ( (5xcosTy) |y:—0.125)

0.125
= —/X 5cos le|y:0.125 dx

=—0125
0.125 5 T
— —cos (—)
x=—0.125 4 8/’

= ( (—5xcosTy) |y:04125)

0.125
Siert = / (%5008 T + 2(2 + SINTX) )|, __o 105 -(— dY)
y=—0.125
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0.125

= —/ 0lx=—0.125dy =0,
y=—0.125

0.125
St = [ (%500sTY + 2(2++ $InT) 159 )
y=—0.125

0.125
= / O|x=0.125dy = 0.
y=—0125

Thus,

5 m 5 T
®= 7€A'de = Stront + Sback + Sieft + Sright = ZCOS (g) - ZCOS (g) +0+0=0.

Problem 5.26 A uniform current density given by
J=12Jy (A/m?),
gives rise to a vector magnetic potential

A= _3 “"TJO(X2 +v?)  (Wh/m).
(a) Apply the vector Poisson’s equation to confirm the above statement.
(b) Use the expression for A to find H.

(c) Use the expression for J in conjunction with Ampére’s law to find H. Compare
your result with that obtained in part (b).

Solution:
(@)
X i . A J
[PA = K O?A+ 9 0%A 4+ 20°A, = 2 (W tozt @> [—Hozo (x? +y2)]

SN R
=7 quo (2+2) = —ZpoJo-

Hence, 0%A = —pgJ is verified.

(b)

Ll L[ O (%A A, (0 oA
H_UODXA_uo[X(ay 62>+y(62 6x>+z<6x 6y>]
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[
Y

~—1]

Figure P5.26: Current cylinder of Problem 5.26.

(©)

%H-dl:l:/\]-ds,
C S

®Hy- @210 = Jo- 1%,
~ A~ T
H=¢@Hy= (pJoE .
We need to convert the expression from cylindrical to Cartesian coordinates. From
Table 3-2,
y .~ X

7_}_ —_—
vy ey

@ = —Ksin@+Jcosp= —X

r=+/x2+y2.
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Hence

s Y . X Jo /5= Yo, XD
=TV s | 2 VY =5 Y5
VY2 Tty

which is identical with the result of part (b).

Problem 5.27 A thin current element extending between z= —L/2 and z = L/2
carries a current | along +Z through a circular cross section of radius a.

(a) Find A ata point P located very far from the origin (assume R is so much larger
than L that point P may be considered to be at approximately the same distance
from every point along the current element).

(b) Determine the corresponding H.

L/2 4

[
\J
-

~

-L/2

A

1\ Cross-section 12

Figure P5.27: Current element of length L observed at distance R > L.

Solution:
(a) Since R > L, we can assume that P is approximately equidistant from all
segments of the current element. Hence, with R treated as constant, (5.65) gives

uo/ J oMo [, L o ol M2 poll
A=t [ 2y Mo dz—z oL [T g, g b0l
4 Jy R 4R Jo i) TR Je T AR
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(b)
H:iDXA
Ho
L[ o
" Mo | oy yax

}

it ' ()| ' ()
ho | Oy | 4m X2 +y2 422 ox | 4m X2 4y2 472

IL —Xy + Yx

~am [(x2+y2+22)3/2] '

Section 5-6: Magnetic Properties of Materials

Problem 5.28 In the model of the hydrogen atom proposed by Bohr in 1913, the
electron moves around the nucleus at a speed of 2 x 10® m/s in a circular orbit of
radius 5 x 10~ m. What is the magnitude of the magnetic moment generated by the
electron’s motion?

Solution: From Eq. (5.69), the magnitude of the orbital magnetic moment of an
electron is

|mo| = ‘—%eur| =2x1.6x 10 ¥%x2x108x5x10 1 =8x10"% (A-m?).

Problem 5.29 Iron contains 8.5 x 10?8 atoms/m3. At saturation, the alignment
of the electrons’ spin magnetic moments in iron can contribute 1.5 T to the total
magnetic flux density B. If the spin magnetic moment of a single electron is
9.27 x 10~2* (A-m?), how many electrons per atom contribute to the saturated field?

Solution: From the first paragraph of Section 5-6.2, the magnetic flux density of a
magnetized material is By, = oM, where M is the vector sum of the microscopic
magnetic dipoles within the material: M = Nemg, where mg is the magnitude of the
spin magnetic moment of an electron in the direction of the mean magnetization, and
Ne is net number of electrons per unit volume contributing to the bulk magnetization.
If the number of electrons per atom contributing to the bulk magnetization is ne, then
Ne = NeNaoms Where Naoms = 8.5 x 10?8 atoms/m? is the number density of atoms

for iron. Therefore,
Ne M B 15
ne = = = =

=1.5 (electrons/atom).
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Section 5-7: Magnetic Boundary Conditions

Problem 5.30 The x-y plane separates two magnetic media with magnetic
permeabilities |3 and |z, as shown in Fig. 5-45 (P5.30). If there is no surface current
at the interface and the magnetic field in medium 1 is

Hl - )’ZH]_X + yH]_y + 2H12,

find:
(a) H2a
(b) 61 and 65, and

(c) evaluate Hp, 61, and 6, for Hy, = 2 (A/m), Hyy = 0, Hy; =4 (A/m), Uy = Ho,
and po = 4uo.

0
~ H1

> X-y plane
Ho

Figure P5.30: Adjacent magnetic media (Problem 5.30).

Solution:
(a) From (5.80),
H1H1n = p2aHon,

and in the absence of surface currents at the interface, (5.85) states
Hat = Hat.
In this case, H1, = Hiyn, and Hyy and Hyy are tangential fields. Hence,

H1H1z = p2H2;,
HlX = H2Xa
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and u
HZZ)A(Hlx‘FyHly‘l‘iu_lle-
2
(b)
Hy = /HZ +HZ,
/42 2
tan© —M—M
1—le_ le )
/142 2
tan© —E— Hlx_l_Hly—Etane
" Hy M Hy, T v
M2
(©

Problem 5.31 Given that a current sheet with surface current density Js= X8 (A/m)
exists at y = 0, the interface between two magnetic media, and Hy = 211 (A/m) in
medium 1 (y > 0), determine Hy in medium 2 (y < 0).

Solution:
‘JS = 5\(8 A/m,
Hy =211 A/m.

H, is tangential to the boundary, and therefore H» is also. With h, =¥, from Eq.
(5.84), we have

Az x (Hy—H2) =Js,
§x (211 — Hy) = %8,
11— 9 x Hp = %8,

or
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Figure P5.31: Adjacent magnetic media with Js on boundary.

which implies that H does not have an x-component. Also, since p1Hiy = poHoy and
H, does not have a y-component, it follows that H, does not have a y-component
either. Consequently, we conclude that

Hy, =123.

Problem 5.32 In Fig. 5-46 (P5.32), the plane defined by x —y = 1 separates
medium 1 of permeability p; from medium 2 of permeability W,. If no surface current
exists on the boundary and

Bi=X2+y3 (T),
find B, and then evaluate your result for y; = 5u,. Hint: Start out by deriving the
equation for the unit vector normal to the given plane.

Solution: We need to find n,. To do so, we start by finding any two vectors in the
plane x—y = 1, and to do that, we need three non-collinear points in that plane. We
choose (0,—1,0), (1,0,0), and (1,0,1).
Vector Az is from (0,—1,0) to (1,0,0):
A =X1+V1.
Vector A; is from (1,0,0) to (1,0,1):
A,=121.

Hence, if we take the cross product A, x A1, we end up in a direction normal to the
given plane, from medium 2 to medium 1,

Ao x A1 _ 21)(()?14—91) _ 91—5\(1

A y
Np = = — -7
2 |A2XA1| |A2XA1| VvVi+1 \/Z

X
7
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43)
N

\/
x

Medium 1 ‘ﬁz (1.0)
1 Medium 2

Ha
/ (01 -1)

Figure P5.32: Magnetic media separated by the plane x—y = 1 (Problem 5.32).

In medium 1, normal component is

R y X o 3 2 1
Bin=fpB1=( 22— =) -R2+493) = = — — = —,
o (\/Z \/§>( y3) V2 V2 V2

R y X 1 9y X
o=t (7~ 5) 75752

Tangential component is

N <

Byt = By — Bin = (X24§3) — (— - g) — 8254925

Boundary conditions:

y X
Bln:BZna or BZn:%_ﬁa
Bax  But
Hyi=Hx, or —=-—.
u 2 Ho H1
Hence,
Bax = 12By, = M2 (22,54 92.5).
M1 M1
Finally,
v % ) )
By = Bon+ By = (X——) + ¥ (3254 925).
2 2] m
For 1 = Sy,
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Problem 5.33 The plane boundary defined by z = 0 separates air from a block of
iron. If By =%4—y6+28 inair (z > 0), find B, in iron (z < 0), given that p = 5000y
for iron.

Solution: From Eq. (5.2),
B a_ge3m).

Hi =
! M1 Ha

The z component is the normal component to the boundary at z = 0. Therefore, from
Eq. (5.79), By, = By, = 8 while, from Eg. (5.85),

1 1
H = H = —4, H prmnd H = ——6,
2x 1x ™ 2y 1y ™
or
H2 H2
B = H = —4’ B = H = ——6,
2x = HazF2x m 2y = K2y m

where [z/p1 = Wy = 5000. Therefore,

B2 = X20000 — 30000 + Z8.

Problem 5.34 Show that if no surface current densities exist at the parallel
interfaces shown in Fig. 5-47 (P5.34), the relationship between 64 and 61 is
independent of .

Figure P5.34: Three magnetic media with parallel interfaces (Problem 5.34).
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Solution: B
tanB, = i,
! Bln
and B
tan6, = —2
BZn
B B
But Bo,, = B, and S Hence,
H2 H1
tan 6, = & Ha 12 tan 0.
mHr M
We note that 8, = 63 and
tan64 = Hs tan63 = Hs tan B, = Hs Ha tan6, = Hs tan B4,
Ho H2 M2 M1 H1

which is independent of 5.

Sections 5-8 and 5-9: Inductance and Magnetic Energy

Problem 5.35 Obtain an expression for the self-inductance per unit length for the
parallel wire transmission line of Fig. 5-27(a) in terms of a, d, and , where a is
the radius of the wires, d is the axis-to-axis distance between the wires, and p is the
permeability of the medium in which they reside.

Solution: Let us place the two wires in the x—z plane and orient the current in one
of them to be along the +z-direction and the current in the other one to be along the
—z-direction, as shown in Fig. P5.35. From Eg. (5.30), the magnetic field at point
P(x,0,z) due to wire 1 is

~ ul . Ml
B1= O =Yoo

where the permeability has been generalized from free space to any substance with
permeability |, and it has been recognized that in the x-z plane, (]): yand r =xas
long as x > 0.

Given that the current in wire 2 is opposite that in wire 1, the magnetic field created
by wire 2 at point P(x,0,2) is in the same direction as that created by wire 1, and it is
given by

ul

B2 :y2n(d —X)
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Figure P5.35: Parallel wire transmission line.

Therefore, the total magnetic field in the region between the wires is

T AN 1 . uld
B=B1+Bx=y— (- = .
152 y2n<x+d—x> y2T|>((d—x)
From Eq. (5.91), the flux crossing the surface area between the wires over a length |
of the wire structure is

®= //B ds—/ZZOH/X (Am“éd_ )).(9dxdz)
-5 (i ().
AL ()
e (52) i (42)
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Since the number of ‘turns’ in this structure is 1, Eq. (5.93) states that the flux linkage
is the same as magnetic flux: A = @. Then Eq. (5.94) gives a total inductance over
the length | as

ANl d—a
L_T_T_E'”(T) .

Therefore, the inductance per unit length is

L = L _H In (d;a> ~ H In (9) (H/m),
| Tt a Tt a

where the last approximation recognizes that the wires are thin compared to the
separation distance (i.e., that d > a). This has been an implied condition from the
beginning of this analysis, where the flux passing through the wires themselves have
been ignored. This is the thin-wire limit in Table 2-1 for the two wire line.

Problem 5.36 A solenoid with a length of 20 cm and a radius of 5 cm consists
of 400 turns and carries a current of 12 A. If z = 0 represents the midpoint of the
solenoid, generate a plot for |H(z)| as a function of z along the axis of the solenoid
for the range —20 cm < z < 20 cm in 1-cm steps.

Solution: Let the length of the solenoid be | =20 cm. From Eq. (5.88a) and Eq.

(5.88b), z = atan® and a2 +t2 = a?sec?6, which implies that z/v/z2 + a2 = sin®.
Generalizing this to an arbitrary observation point z’ on the axis of the solenoid,

(z—17')/4/(z—17')%+ a2 = sin@. Using this in Eq. (5.89),
|

H(0,0,7') = % = 2%(sin92—sin61)

|
N>
(NYR=3

1/2—7 B —l/2-7
Vj2=22+a \J(-1j2-2)2+a2
o it S Vs 3 ) (Am).
2 (\/(I/Zz’)2+a2 Vij2+2)2 a2

A plot of the magnitude of this function of z' with a =5 cm, n = 400 turns/20 cm =
20,000 turns/m, and | = 12 A appears in Fig. P5.36.
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Figure P5.36: Problem 5.36.

Problem 5.37 In terms of the d-c current I, how much magnetic energy is stored in
the insulating medium of a 3-m-long, air-filled section of a coaxial transmission line,
given that the radius of the inner conductor is 5 cm and the inner radius of the outer
conductor is 10 cm?

Solution: From Eg. (5.99), the inductance per unit length of an air-filled coaxial

cable is given by
;__ Ho 9
L'= —ann (a) (H/m).

Over a length of 2 m, the inductance is

3x4mtx 10~7 In (10

9! _ ) = -9 .
L=2L'= - 5) 416 x107° (H)

From Eq. (5.104), W, = L12/2 = 20812 (nJ), where Wy, is in nanojoules when | is in
amperes. Alternatively, we can use Eq. (5.106) to compute Wyy:

szl/ HoH?d .
2 )y
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From Eq. (5.97), H = B/up = | /21, and

1 p3m p2m b | \? irdod 5
Wn == / / (—) rdr 7z =208l nJ).
m=3) o=0)r—a Ho ST ¢ (nJ)

Problem 5.38 The rectangular loop shown in Fig. 5-48 (P5.38) is coplanar with
the long, straight wire carrying the current | = 20 A. Determine the magnetic flux

through the loop.

20A 30cm

5cm
<—— 20cm—|

X

Figure P5.38: Loop and wire arrangement for Problem 5.38.

Solution: The field due to the long wire is, from Eq. (5.30),

_~bol o pol o Hol
B_(pZT[I’ T Tom T X2ny’
where in the plane of the loop, (i) becomes —X and r becomes y.
The flux through the loop is along —X, and the magnitude of the flux is

20cm &
dJ:/B-ds:g—(;l/ —5-—?((300m><dy)
S 5

cm y
0.2
= “—ol x 0.3 %
21 005 Y
. 0.3o

0.2 6
x 20 x In (m) =1.66x 107 (Whb).
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Problem 5.39 A circular loop of radius a carrying current 11 is located in the x-y
plane as shown in the figure. In addition, an infinitely long wire carrying current I,
in a direction parallel with the z-axis is located at y = yo.

K ijlparallel to2
2
-\ : y
a A
Iy

X

(@) Determine H at P(0,0,h).
(b) Evaluate Hfora=3cm, yo=10cm, h=4cm, I; =10A,and I, =20 A.
Solution:

(a) The magnetic field at P(0,0,h) is composed of H; due to the loop and H» due
to the wire:

H=Hi+Ho>.
From (5.34), withz = h,
A |13.2
Hi=2—————~ (A/m).
1T 2(a2+ h2)3/2 (A/m)

From (5.30), the field due to the wire at a distance r = yg is

HZZ&)Z—nyO

where (])is defined with respect to the coordinate system of the wire. Point P is located
at an angel @ = —90° with respect to the wire coordinates. From Table 3-2,

@= —XsinQ+§cos@
=X (at = —90°).

Hence, ,
N l1a . b2
H=2 X A/m).
2(a2+h2)3/2 + 2Tyo ( )
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(b)
H=236+%31.83 (A/m).

Problem 5.40 A cylindrical conductor whose axis is coincident with the z-axis has
an internal magnetic field given by

H= &’%[1 —(4r+1)e ] (A/m)forr<a

where a is the conductor’s radius. If a=5 cm, what is the total current flowing in the
conductor?

Solution: We can follow either of two possible approaches. The first involves the
use of Ampére’s law and the second one involves finding J from H and then | from J.
We will demonstrate both.

Approach 1: Ampére’s law

Applying Ampeére’s law at r = a,

H-del,_, =
oo H-del g =1
2T[,\2 R

[ et e ) grag =1
0

r=a

| =41 — (4a+1)e™®] (A).

Fora=5cm, | =0.22 (A).
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Approach2: H—J— |

J=0xH

.10
zFa(rH(p)
10

= 2Fa(2[1—(4r+1)e*4r])

1
=2- [—8e ¥ +8(4r+1)e ]

=232e7%.

a
I:/J-ds:/ 732 4 .221r dr

S r=0

a
= 6411 / re ¥ dr
r

=0
_ b4am
~ 16
=4m{1—(4a+1)e ®] (A).

[1— (4a+1)e %

Problem 5.41 Determine the mutual inductance between the circular loop and the
linear current shown in the figure.

\/
=<

Solution: To calculate the magnetic flux through the loop due to the current in the
conductor, we consider a thin strip of thickness dy at location y, as shown. The
magnetic field is the same at all points across the strip because they are all equidistant
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(at r = d +y) from the linear conductor. The magnetic flux through the strip is
d®, =B(y)-ds= 2U70| -22(a2 _y2)1/2 dy

2n(d +y)
_ ol (@ —y*)"

-~ md+y)

1
L12 = T/dq)lZ
s

_@/a (a—y?)/2dy
S Ty=—a  (d+y)

dy

Letz=d+y — dz=dy. Hence,

=

d+a \/ d2 +2dz—22
e,

:@/@
n) z
where R = ag + boz + coz? and
ag = a®—d?
bog=2d
00:—1

A = 4agco— b3 = —4a® < 0

From Gradshteyn and Ryzhik, Table of Integrals, Series, and Products (Academic
Press, 1980, p. 84), we have

VR dz bo dz
Y dz=vR+a — .
/ z 0 \/_ vR

For

d+a d+a

vR — /a2 —d242dz— 72 —0-0=0.

z=d—a

z=d—a

For / 7R several solutions exist depending on the sign of ag and A.
z
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For this problem, A < 0, also let ag < 0 (i.e., d > a). Using the table of integrals,

d+a
a dz a[ 1 sinl( 2ag + boz )]
0f —F==a0 | 77— —F
zvR Vv—ao fh2
z4/bg— 4apCo dea
2 42 d+a
:_\/dz—az[sinl(ia d +dz)]
az 7=d—a
=-—-m/d?—a2.

d . . . . .
For / —; different solutions exist depending on the sign of cg and A.
In this problem, A < 0 and co < 0. From the table of integrals,

bo E_@[ -1 Sm_lzconrm,]“a
z vR 2 [vV—Co V=D 1= a

_ d+a
— _d [Sin_1<—d Z)] — 1.
a z=d—a

L= PO, [nd _m/d2— aZ]

L

— Lo [d— \/d2—a2] .

Thus





