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Chapter 4:  Electrostatics 
 
 
Lesson #22 
Chapter — Section:  4-1 to 4-3 
Topics:  Charge and current distributions, Coulomb’s law 
 
Highlights: 

• Maxwell’s Equations reduce to uncoupled electrostatics and magnetostatics when 
charges are either fixed in space or move at constant speed. 

• Line, surface and volume charge distributions 
• Coulomb’s law for various charge distributions 

 
Special Illustrations: 

• Examples 4-3 and 4-4 
• CD-ROM Modules 4.1-4.5 
• CD-ROM Demos 4.1-4.8 
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Lesson #23 
Chapter — Section:  4-4 
Topics:  Gauss’s law 
 
Highlights: 

• Gauss’s law in differential and integral form 
• The need for symmetry to apply Gauss’s law in practice 
• Coulomb’s law for various charge distributions 

 
Special Illustrations: 

• Example 4-6 
• CD-ROM Module 4.6 
• CD-ROM Demos 4.9 and 4.10 
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Lesson #24 
Chapter — Section:  4-5 
Topics:  Electric potential 
 
Highlights: 

• Concept of “potential” 
• Relation to electric field 
• Relation to charges 
• Poisson’s and Laplace’s equations 

 
Special Illustrations: 

• Example 4-7 
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Lesson #25 
Chapter — Section:  4-6 and 4-7 
Topics:  Electrical materials and conductors 
 
Highlights: 

• Conductivity ranges for conductors, semiconductors, and insulators 
• Ohm’s law 
• Resistance of a wire 
• Joule’s law 

 
Special Illustrations: 

• Example 4-9 
• Technology Brief on “Resistive Sensors” (CD-ROM) 

 
 
Resistive Sensors  

An electrical sensor is a device capable of responding to an applied stimulus by generating an 
electrical signal whose voltage, current, or some other attribute is related to the intensity of the 
stimulus.  The family of possible stimuli encompasses a wide array of physical, chemical, and 
biological quantities including temperature, pressure, position, distance, motion, velocity, 
acceleration, concentration (of a gas or liquid), blood flow, etc.  The sensing process relies on 
measuring resistance, capacitance, inductance, induced electromotive force (emf), oscillation 
frequency or time delay, among others.  This Technology Brief covers resistive sensors.  
Capacitive, inductive, and emf sensors are covered 
separately (in this and later chapters).  

Piezoresistivity  

According to Eq. (4.70), the resistance of a 
cylindrical resistor or wire conductor is given by  
R = l/σA), where l is the cylinder’s length, A is its 
cross-sectional area, and σ is the conductivity of 
its material. Stretching the wire by an applied 
external force causes l to increase and A to 
decrease.  Consequently, R increases (A). 
Conversely, compressing the wire causes R to 
decrease.  The Greek word piezein means to press, 
from which the term piezoresistivity is derived.  
This should not be confused with piezoelectricity, 
which is an emf effect (see EMF Sensors).  
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Lesson #26 
Chapter — Section:  4-8, 4-9 
Topics:  Dielectrics, boundary conditions 
 
Highlights: 

• Relative permittivity and dielectric strength 
• Electrostatic boundary conditions for various dielectric and conductor 

combinations 
 
Special Illustrations: 

• Example 4-10 
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Lesson #27 
Chapter — Section:  4-10 
Topics:  Capacitance 
 
Highlights: 

• Capacitor as “charge accumulator” 
• General expression for C 
• Capacitance of parallel-plate and coaxial capacitors 
• Joule’s law 

 
Special Illustrations: 

• Examples 4-11 and 4-12 
• Technology Brief on “Capacitive Sensors” (CD-ROM) 

 
 
Capacitive Sensors  

To sense is to respond to a stimulus (see Resistive Sensors).  A capacitor can function as a sensor 
if the stimulus changes the capacitor’s geometry—usually the spacing between its conductive 
elements—or the dielectric properties of the insulating material situated between them. 
Capacitive sensors are used in a multitude of 
applications. A few examples follow.  

Fluid Gauge  

The two metal electrodes in (A), usually rods or 
plates, form a capacitor whose capacitance is 
directly proportional to the permittivity of the 
material between them. If the fluid section is of 
height Hf  and the height of the empty space above 
it is (H – Hf ), then the overall capacitance is 
equivalent to two capacitors in parallel:  

 
where w is the electrode plate width, d is the 
spacing between electrodes, and εf and εa are the 
permittivities of the fluid and air, respectively.   
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Lesson #28 
Chapter — Section:  4-11 
Topics:  Energy 
 
Highlights: 

• A charged capacitor is an energy storage device 
• Energy density 

 
Special Illustrations: 

• Technology Brief on “Non-Contact Sensors” (CD-ROM) 
 
 
Non-Contact Sensors  

Precision positioning is a critical ingredient of semiconductor device fabrication, as well as the 
operation and control of many mechanical systems.  Non-contact capacitive sensors are used to 
sense the position of silicon wafers during the deposition, etching, and cutting processes, without 
coming in direct contact with the wafers.  They are also used to sense and control robot arms in 
equipment manufacturing and to position hard disc drives, photocopier rollers, printing presses, 
and other similar systems. 

Basic Principle 

The concentric plate capacitor (A1) consists of 
two metal plates, sharing the same plane, but 
electrically isolated from each other by an 
insulating material.  When connected to a 
voltage source, charges of opposite polarity will 
form on the two plates, resulting in the creation 
of electric-field lines between them.  The same 
principle applies to the adjacent-plates capacitor 
in (A2). In both cases, the capacitance is 
determined by the shapes and sizes of the 
conductive elements and by the permittivity of 
the dielectric medium containing the electric 
field lines between them.  
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Lesson #29 
Chapter — Section:  4-12 
Topics:  Image method 
Highlights: 

• Image method useful for solving problems involving charges next to conducting 
planes 

• Remove conducting plane and replace with mirror images for the charges (with 
opposite polarity) 

 
Special Illustrations: 

• Example 4-13 
• CD-ROM Demos 4.11-4.13 
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Chapter 4

Sections 4-2: Charge and Current Distributions

Problem 4.1 A cube 2 m on a side is located in the first octant in a Cartesian
coordinate system, with one of its corners at the origin. Find the total charge
contained in the cube if the charge density is given by ρv � xy2e � 2z (mC/m3).

Solution: For the cube shown in Fig. P4.1, application of Eq. (4.5) gives

Q � �
V

ρv dV � � 2

x � 0

� 2

y � 0

� 2

z � 0
xy2e � 2z dx dy dz

� � � 1
12

x2y3e � 2z 
 �����

2

x � 0
�����

2

y � 0
�����

2

z � 0

� 8
3

�
1 � e � 4 ��� 2  62 mC 

2 m

0

2 m

2 m y

z

x

Figure P4.1: Cube of Problem 4.1.

Problem 4.2 Find the total charge contained in a cylindrical volume defined by
r

�
2 m and 0

�
z

�
3 m if ρv � 20rz (mC/m3).

Solution: For the cylinder shown in Fig. P4.2, application of Eq. (4.5) gives

Q � � 3

z � 0

� 2π

φ � 0

� 2

r � 0
20rz r dr dφ dz

� �
10
3

r3φz2 
 �����

2

r � 0
�����

2π

φ � 0
�����

3

z � 0

� 480π (mC) � 1  5 C 
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3 m

0

2 m

2 m
y

z

x

Figure P4.2: Cylinder of Problem 4.2.

Problem 4.3 Find the total charge contained in a cone defined by R
�

2 m and
0

� θ � π � 4, given that ρv � 10R2 cos2 θ (mC/m3).

Solution: For the cone of Fig. P4.3, application of Eq. (4.5) gives

Q � � 2π

φ � 0

� π � 4
θ � 0

� 2

R � 0
10R2 cos2 θ R2 sinθ dR dθ dφ

� � � 2
3

R5φcos3 θ 
 �����

2

R � 0
�����

π � 4
θ � 0

�����

2π

φ � 0

� 128π
3

��
1 �

� � 2
2 � 3

��
� 86  65 (mC) 
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2 m

0
y

z

x

π/4

Figure P4.3: Cone of Problem 4.3.

Problem 4.4 If the line charge density is given by ρl � 24y2 (mC/m), find the total
charge distributed on the y-axis from y � � 5 to y � 5.

Solution:

Q � � 5

� 5
ρl dy � � 5

� 5
24y2 dy � 24y3

3 ����

5

� 5
� 2000 mC � 2 C 

Problem 4.5 Find the total charge on a circular disk defined by r
�

a and z � 0 if:
(a) ρs � ρs0 cos φ (C/m2),
(b) ρs � ρs0 sin2 φ (C/m2),
(c) ρs � ρs0e � r (C/m2),
(d) ρs � ρs0e � r sin2 φ (C/m2),

where ρs0 is a constant.

Solution:
(a)

Q � �
ρs ds � � a

r � 0

� 2π

φ � 0
ρs0 cosφ r dr dφ � ρs0

r2

2 ����

a

0
sinφ ����

2π

0

� 0 
(b)

Q � � a

r � 0

� 2π

φ � 0
ρs0 sin2 φ r dr dφ � ρs0

r2

2 ����

a

0

� 2π

0

�
1 � cos2φ

2 
 dφ

� ρs0a2

4

�
φ � sin2φ

2 
 ����

2π

0
� πa2

2
ρs0 
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(c)

Q � � a

r � 0

� 2π

φ � 0
ρs0e � rr dr dφ � 2πρs0

� a

0
re � r dr

� 2πρs0
� � re � r � e � r � a

0� 2πρs0 � 1 � e � a � 1 	 a ��� 
(d)

Q � � a

r � 0

� 2π

φ � 0
ρs0e � r sin2 φ r dr dφ

� ρs0

� a

r � 0
re � r dr

� 2π

φ � 0
sin2 φ dφ

� ρs0 � 1 � e � a � 1 	 a ��� � π � πρs0 � 1 � e � a � 1 	 a ��� 
Problem 4.6 If J � ŷ4xz (A/m2), find the current I flowing through a square with
corners at

�
0 � 0 � 0 � , � 2 � 0 � 0 � , � 2 � 0 � 2 � , and

�
0 � 0 � 2 � .

Solution: Using Eq. (4.12), the net current flowing through the square shown in Fig.
P4.6 is

I � �
S

J � ds � � 2

x � 0

� 2

z � 0

�
ŷ4xz � �����

y � 0

� � ŷ dx dz ��� � x2z2 � �����

2

x � 0
�����

2

z � 0

� 16 A 

2 m

2 m

0
y

z

x

J

Figure P4.6: Square surface.
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Problem 4.7 If J � R̂5 � R (A/m2), find I through the surface R � 5 m.

Solution: Using Eq. (4.12), we have

I � �
S

J � ds � � 2π

φ � 0

� π

θ � 0

�
R̂

5
R 
 � � R̂R2 sinθ dθ dφ �

� � 5Rφcosθ �����
R � 5

�����

π

θ � 0
�����

2π

φ � 0

� 100π � 314  2 (A) 
Problem 4.8 An electron beam shaped like a circular cylinder of radius r0 carries a
charge density given by

ρv � � � ρ0

1 	 r2 
 (C/m3 � �
where ρ0 is a positive constant and the beam’s axis is coincident with the z-axis.

(a) Determine the total charge contained in length L of the beam.
(b) If the electrons are moving in the 	 z-direction with uniform speed u, determine

the magnitude and direction of the current crossing the z-plane.

Solution:
(a)

Q � � r0

r � 0

� L

z � 0
ρv dV � � r0

r � 0

� L

z � 0

� � ρ0

1 	 r2 
 2πr dr dz

� � 2πρ0L
� r0

0

r
1 	 r2 dr � � πρ0L ln

�
1 	 r2

0 � 
(b)

J � ρvu � � ẑ
uρ0

1 	 r2 (A/m2) �
I � �

J � ds

� � r0

r � 0

� 2π

φ � 0

�
� ẑ

uρ0

1 	 r2 
 � ẑr dr dφ

� � 2πuρ0

� r0

0

r
1 	 r2 dr � � πuρ0 ln

�
1 	 r2

0 � (A) 
Current direction is along � ẑ.
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Section 4-3: Coulomb’s Law

Problem 4.9 A square with sides 2 m each has a charge of 40 µC at each of its four
corners. Determine the electric field at a point 5 m above the center of the square.

R3


R2


z

P(0,0,5)

y

x

R1R4

Q1(1,1,0)

Q2(-1,1,0)

Q3(-1,-1,0)

Q4(1,-1,0)

Figure P4.9: Square with charges at the corners.

Solution: The distance �R � between any of the charges and point P is
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�R � � � 12 	 12 	 52 � � 27.

E � Q
4πε0

�
R1

�R � 3 	 R2

�R � 3 	 R3

�R � 3 	 R4

�R � 3 �
� Q

4πε0

� � x̂ � ŷ 	 ẑ5�
27 � 3 � 2 	 x̂ � ŷ 	 ẑ5�

27 � 3 � 2 	 � x̂ 	 ŷ 	 ẑ5�
27 � 3 � 2 	 x̂ 	 ŷ 	 ẑ5�

27 � 3 � 2 �� ẑ
5Q�

27 � 3 � 2πε0
� ẑ

5 � 40 µC�
27 � 3 � 2πε0

� 1  42
πε0

� 10 � 6 (V/m) � ẑ51  2 (kV/m) 
Problem 4.10 Three point charges, each with q � 3 nC, are located at the corners
of a triangle in the x–y plane, with one corner at the origin, another at

�
2 cm � 0 � 0 � ,

and the third at
�
0 � 2 cm � 0 � . Find the force acting on the charge located at the origin.

Solution: Use Eq. (4.19) to determine the electric field at the origin due to the other
two point charges [Fig. P4.10]:

E � 1
4πε

�
3 nC

� � x̂0  02 ��
0  02 � 3 � 	 3 nC

� � ŷ0  02 ��
0  02 � 3 � � 67  4 � x̂ 	 ŷ � (kV/m) at R � 0 

Employ Eq. (4.14) to find the force F � qE � � 202  2 � x̂ 	 ŷ � (µN) 
2 cm

2 cmQ

Q

Q

x

y

R2

R1

R1 = -x 2 cm^

R2 = -y 2 cm^

Figure P4.10: Locations of charges in Problem 4.10.

Problem 4.11 Charge q1 � 6 µC is located at
�
1 cm � 1 cm � 0 � and charge q2

is located at
�
0 � 0 � 4 cm � . What should q2 be so that E at

�
0 � 2 cm � 0 � has no

y-component?

Solution: For the configuration of Fig. P4.11, use of Eq. (4.19) gives
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4 cm

1 cm

1 cm 2 cm
0 y

z

x

R2

E2
R1

E1

q1

q2

R2 = (y2 - z4) cm ^ ^

R1 = -x + y(2-1) = (-x + y) cm^ ^ ^^

Figure P4.11: Locations of charges in Problem 4.11.

E
�
R � ŷ2cm ��� 1

4πε

�
6µC

� � x̂ 	 ŷ ��� 10 � 2�
2 � 10 � 2 � 3 � 2 	 q2

�
ŷ2 � ẑ4 ��� 10 � 2�
20 � 10 � 2 � 3 � 2 �

� 1
4πε

� � x̂21  21 � 10 � 6 	 ŷ
�
21  21 � 10 � 6 	 0  224q2 �

� ẑ0  447q2 � (V/m) 
If Ey � 0, then q2 � � 21  21 � 10 � 6 � 0  224 � � 94  69 (µC) 
Problem 4.12 A line of charge with uniform density ρl � 8 (µC/m) exists in air
along the z-axis between z � 0 and z � 5 cm. Find E at (0,10 cm,0).

Solution: Use of Eq. (4.21c) for the line of charge shown in Fig. P4.12 gives

E � 1
4πε0

�
l �

R̂ � ρl dl �

R � 2
�

R � � ŷ0  1 � ẑz

� 1
4πε0

� 0 � 05

z � 0

�
8 � 10 � 6 � �

ŷ0  1 � ẑz �
� � 0  1 � 2 	 z2 � 3 � 2 dz

� 8 � 10 � 6

4πε0

�
ŷ10z 	 ẑ

� �
0  1 � 2 	 z2 � �����

0 � 05

z � 0� 71  86 � 103 � ŷ4  47 � ẑ1  06 � � ŷ321  4 � 103 � ẑ76  2 � 103 (V/m) 
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5 cm

dz

10 cm
0 y

z

x

R' = y0.1 - zz^ ^

Figure P4.12: Line charge.

Problem 4.13 Electric charge is distributed along an arc located in the x–y plane
and defined by r � 2 cm and 0

� φ � π � 4. If ρl � 5
�
µC/m), find E at

�
0 � 0 � z � and

then evaluate it at (a) the origin, (b) z � 5 cm, and (c) z � � 5 cm.

Solution: For the arc of charge shown in Fig. P4.13, dl � r dφ � 0  02 dφ � and
R � � � x̂0  02cos φ � ŷ0  02sin φ 	 ẑz. Use of Eq. (4.21c) gives

E � 1
4πε0

�
l �

R̂ � ρl dl �

R � 2� 1
4πε0

� π � 4
φ � 0

ρl

� � x̂0  02cos φ � ŷ0  02sin φ 	 ẑz �� �
0  02 � 2 	 z2 � 3 � 2 0  02 dφ

� 898  8� �
0  02 � 2 	 z2 � 3 � 2 � � x̂0  014 � ŷ0  006 	 ẑ0  78z � (V/m) 

(a) At z � 0, E � � x̂1  6 � ŷ0  66 (MV/m) 
(b) At z � 5 cm, E � � x̂81  4 � ŷ33  7 	 ẑ226 (kV/m) 
(c) At z � � 5 cm, E � � x̂81  4 � ŷ33  7 � ẑ226 (kV/m) 
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2 cm

z

y

z

x

R' = -r 0.02 + zz^ ^

r2 cm = ^
π/4

r 0.02 m^ 

dz

Figure P4.13: Line charge along an arc.

Problem 4.14 A line of charge with uniform density ρl extends between z � � L � 2
and z � L � 2 along the z-axis. Apply Coulomb’s law to obtain an expression for the
electric field at any point P

�
r� φ � 0 � on the x–y plane. Show that your result reduces to

the expression given by Eq. (4.33) as the length L is extended to infinity.

Solution: Consider an element of charge of height dz at height z. Call it element 1.
The electric field at P due to this element is dE1. Similarly, an element at � z
produces dE2. These two electric fields have equal z-components, but in opposite
directions, and hence they will cancel. Their components along r̂ will add. Thus, the
net field due to both elements is

dE � dE1 	 dE2 � r̂
2ρl cosθ dz

4πε0R2 � r̂ρl cosθ dz
2πε0R2 

where the cosθ factor provides the components of dE1 and dE2 along r̂.
Our integration variable is z, but it will be easier to integrate over the variable θ

from θ � 0 to

θ0 � sin � 1 L � 2
� r2 	 �

L � 2 � 2 
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z

L/2

1

R

2

z

-z

θ0
θ
θ

θ
θ

r

2

dE2

dE1

-L/2

dz

x-y plane

Figure P4.14: Line charge of length L.

Hence, with R � r � cos θ, and z � r tan θ and dz � r sec2 θ dθ, we have

E � � L � 2
z � 0

dE � � θ0

θ � 0
dE � � θ0

0
r̂

ρl

2πε0

cos3 θ
r2 r sec2 θ dθ

� r̂
ρl

2πε0r

� θ0

0
cos θ dθ

� r̂
ρl

2πε0r
sinθ0 � r̂

ρl

2πε0r
L � 2

� r2 	 �
L � 2 � 2 

For L � r,
L � 2

� r2 	 �
L � 2 � 2 � 1 �
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and
E � r̂

ρl

2πε0r
(infinite line of charge) 

Problem 4.15 Repeat Example 4-5 for the circular disk of charge of radius a, but
in the present case assume the surface charge density to vary with r as

ρs � ρs0r2 (C/m2) �
where ρs0 is a constant.

Solution: We start with the expression for dE given in Example 4-5 but we replace
ρs with ρs0r2:

dE � ẑ
h

4πε0
�
r2 	 h2 � 3 � 2 � 2πρs0r3 dr � �

E � ẑ
ρs0h
2ε0

� a

0

r3 dr�
r2 	 h2 � 3 � 2 

To perform the integration, we use

R2 � r2 	 h2 �
2R dR � 2r dr�

E � ẑ
ρs0h
2ε0

� � a2 � h2 � 1 � 2

h

�
R2 � h2 � dR

R2

� ẑ
ρs0h
2ε0

� � � a2 � h2 � 1 � 2

h
dR � � � a2 � h2 � 1 � 2

h

h2

R2 dR �
� ẑ

ρs0h
2ε0

� � a2 	 h2 	 h2� a2 	 h2 � 2h � 
Problem 4.16 Multiple charges at different locations are said to be in equilibrium
if the force acting on any one of them is identical in magnitude and direction to the
force acting on any of the others. Suppose we have two negative charges, one located
at the origin and carrying charge � 9e, and the other located on the positive x-axis at
a distance d from the first one and carrying charge � 36e. Determine the location,
polarity and magnitude of a third charge whose placement would bring the entire
system into equilibrium.

Solution: If

F1 � force on Q1 �
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(d-x)x

d

Q1 = -9e Q3 Q2 = -36e

x=0
x

Figure P4.16: Three collinear charges.

F2 � force on Q2 �
F3 � force on Q3 �

then equilibrium means that
F1 � F2 � F3 

The two original charges are both negative, which mean they would repel each other.
The third charge has to be positive and has to lie somewhere between them in order
to counteract their repulsion force. The forces acting on charges Q1, Q2, and Q3 are
respectively

F1 � R̂21Q1Q2

4πε0R2
21 	 R̂31Q1Q3

4πε0R2
31

� � x̂
324e2

4πε0d2 	 x̂
9eQ3

4πε0x2 �
F2 � R̂12Q1Q2

4πε0R2
12 	 R̂32Q3Q2

4πε0R2
32

� x̂
324e2

4πε0d2 � x̂
36eQ3

4πε0
�
d � x � 2 �

F3 � R̂13Q1Q3

4πε0R2
13 	 R̂23Q2Q3

4πε0R2
23

� � x̂
9eQ3

4πε0x2 	 x̂
36eQ3

4πε0
�
d � x � 2 

Hence, equilibrium requires that

� 324e
d2 	 9Q3

x2 � 324e
d2 � 36Q3�

d � x � 2 � � 9Q3

x2 	 36Q3�
d � x � 2 

Solution of the above equations yields

Q3 � 4e � x � d
3


Section 4-4: Gauss’s Law

Problem 4.17 Three infinite lines of charge, all parallel to the z-axis, are located at
the three corners of the kite-shaped arrangement shown in Fig. 4-29 (P4.17). If the
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two right triangles are symmetrical and of equal corresponding sides, show that the
electric field is zero at the origin.

y

x

ρl ρl

-2ρl

Figure P4.17: Kite-shaped arrangment of line charges for Problem 4.17.

Solution: The field due to an infinite line of charge is given by Eq. (4.33). In the
present case, the total E at the origin is

E � E1 	 E2 	 E3 
The components of E1 and E2 along x̂ cancel and their components along � ŷ add.
Also, E3 is along ŷ because the line charge on the y-axis is negative. Hence,

E � � ŷ
2ρl cos θ
2πε0R1 	 ŷ

2ρl

2πε0R2


But cosθ � R1 � R2. Hence,

E � � ŷ
ρl

πε0R1

R1

R2 	 ŷ
ρl

πε0R2
� 0 

Problem 4.18 Three infinite lines of charge, ρl1 � 3 (nC/m), ρl2 � � 3 (nC/m), and
ρl3 � 3 (nC/m), are all parallel to the z-axis. If they pass through the respective points
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ρl3

ρl2

ρl1

R3 E1

E3

P

(a,0)

(0,-b)

(0,b)

E2

y

x

Figure P4.18: Three parallel line charges.

�
0 � � b � , � 0 � 0 � , and

�
0 � b � in the x–y plane, find the electric field at

�
a � 0 � 0 � . Evaluate

your result for a � 2 cm and b � 1 cm.

Solution:

ρl1 � 3 (nC/m) �
ρl2 � � 3 (nC/m) �
ρl3 � ρl1 �
E � E1 	 E2 	 E3 

Components of line charges 1 and 3 along y cancel and components along x add.
Hence, using Eq. (4.33),

E � x̂
2ρl1

2πε0R1
cosθ 	 x̂

ρl2

2πε0a


with cos θ � a� a2 	 b2
and R1 � � a2 	 b2,

E � x̂3
2πε0

�
2a

a2 	 b2 � 1
a � � 10 � 9 (V/m) 
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For a � 2 cm and b � 1 cm,

E � x̂1  62 (kV/m) 
Problem 4.19 A horizontal strip lying in the x–y plane is of width d in the
y-direction and infinitely long in the x-direction. If the strip is in air and has a
uniform charge distribution ρs, use Coulomb’s law to obtain an explicit expression
for the electric field at a point P located at a distance h above the centerline of the
strip. Extend your result to the special case where d is infinite and compare it with
Eq. (4.25).

� � � � � �

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�

ρs

xd

dE2

z

dE1

y

1

2
y

-y

R�
�
�

θ θ

θ0

P(0,0,h)

� � � � �

Figure P4.19: Horizontal strip of charge.

Solution: The strip of charge density ρs (C/m2) can be treated as a set of adjacent line
charges each of charge ρl � ρs dy and width dy. At point P, the fields of line charge
at distance y and line charge at distance � y give contributions that cancel each other
along ŷ and add along ẑ. For each such pair,

dE � ẑ
2ρs dycos θ

2πε0R
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With R � h � cos θ, we integrate from y � 0 to d � 2, which corresponds to θ � 0 to
θ0 � sin � 1 � � d � 2 � � � h2 	 �

d � 2 � 2 � 1 � 2 � . Thus,

E � � d � 2
0

dE � ẑ
ρs

πε0

� d � 2
0

cosθ
R

dy � ẑ
ρs

πε0

� θ0

0

cos2 θ
h

� h
cos2 θ

dθ

� ẑ
ρs

πε0
θ0 

For an infinitely wide sheet, θ0 � π � 2 and E � ẑ
ρs

2ε0
, which is identical with Eq.

(4.25).

Problem 4.20 Given the electric flux density

D � x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � (C/m2) �

determine
(a) ρv by applying Eq. (4.26),
(b) the total charge Q enclosed in a cube 2 m on a side, located in the first octant

with three of its sides coincident with the x-, y-, and z-axes and one of its
corners at the origin, and

(c) the total charge Q in the cube, obtained by applying Eq. (4.29).

Solution:
(a) By applying Eq. (4.26)

ρv � ∇ � D � ∂
∂x

�
2x 	 2y � 	 ∂

∂y

�
3x � 2y ��� 0 

(b) Integrate the charge density over the volume as in Eq. (4.27):

Q � �
V

∇ � DdV � � 2

x � 0

� 2

y � 0

� 2

z � 0
0 dx dy dz � 0 

(c) Apply Gauss’ law to calculate the total charge from Eq. (4.29)

Q � �

�
D � ds � Ffront 	 Fback 	 Fright 	 Fleft 	 Ftop 	 Fbottom �

Ffront � � 2

y � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

x � 2

� � x̂ dz dy �
� � 2

y � 0

� 2

z � 0
2
�
x 	 y � �����

x � 2

dz dy �
��

2z

�
2y 	 1

2
y2 
 �����

2

z � 0

��
�����

2

y � 0

� 24 �
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Fback � � 2

y � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

x � 0

� � � x̂ dz dy �
� � � 2

y � 0

� 2

z � 0
2
�
x 	 y � �����

x � 0

dz dy � �
��

zy2 �����

2

z � 0

��
�����

2

y � 0

� � 8 �
Fright � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

y � 2

� � ŷ dz dx �
� � 2

x � 0

� 2

z � 0

�
3x � 2y � �����

y � 2

dz dx �
��

z

�
3
2

x2 � 4x 
 �����

2

z � 0

��
�����

2

x � 0

� � 4 �
Fleft � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

y � 0

� � � ŷ dz dx �
� � � 2

x � 0

� 2

z � 0

�
3x � 2y � �����

y � 0

dz dx � �
��

z

�
3
2

x2 
 �����

2

z � 0

��
�����

2

x � 0

� � 12 �
Ftop � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

z � 2

� � ẑ dy dx �
� � 2

x � 0

� 2

z � 0
0 �����

z � 2

dy dx � 0 �
Fbottom � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

z � 0

� � ẑ dy dx �
� � 2

x � 0

� 2

z � 0
0 �����

z � 0

dy dx � 0 
Thus Q � �

�
D � ds � 24 � 8 � 4 � 12 	 0 	 0 � 0 

Problem 4.21 Repeat Problem 4.20 for D � x̂xy3z3 (C/m2).

Solution:

(a) From Eq. (4.26), ρv � ∇ � D � ∂
∂x

�
xy3z3 ��� y3z3 

(b) Total charge Q is given by Eq. (4.27):

Q � �
V

∇ � DdV � � 2

z � 0

� 2

y � 0

� 2

x � 0
y3z3 dx dy dz � xy4z4

16 �����

2

x � 0
�����

2

y � 0
�����

2

z � 0

� 32 C 
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(c) Using Gauss’ law we have

�

�
S

D � ds � Ffront 	 Fback 	 Fright 	 Fleft 	 Ftop 	 Fbottom 
Note that D � x̂Dx, so only Ffront and Fback (integration over ẑ surfaces) will contribute
to the integral.

Ffront � � 2

z � 0

� 2

y � 0

�
x̂xy3z3 � �����

x � 2

� � x̂ dy dz �
� � 2

z � 0

� 2

y � 0
xy3z3 �����

x � 2

dy dz �
��

2

�
y4z4

16 
 �����

2

y � 0

��
�����

2

z � 0

� 32 �
Fback � � 2

z � 0

� 2

y � 0

�
x̂xy3z3 � �����

x � 0

� � � x̂ dy dz ��� � � 2

z � 0

� 2

y � 0
xy3z3 �����

x � 0

dy dz � 0 
Thus Q � �

�
D � ds � 32 	 0 	 0 	 0 	 0 	 0 � 32 C 

Problem 4.22 Charge Q1 is uniformly distributed over a thin spherical shell of
radius a, and charge Q2 is uniformly distributed over a second spherical shell of
radius b, with b � a. Apply Gauss’s law to find E in the regions R � a, a � R � b,
and R � b.

Solution: Using symmetry considerations, we know D � R̂DR. From Table 3.1,
ds � R̂R2 sinθ dθ dφ for an element of a spherical surface. Using Gauss’s law in
integral form (Eq. (4.29)),

�

�
S

D � ds � Qtot �
where Qtot is the total charge enclosed in S. For a spherical surface of radius R,

� 2π

φ � 0

� π

θ � 0

�
R̂DR � � � R̂R2 sinθ dθ dφ ��� Qtot �

DRR2 � 2π � � � cos θ � π0 � Qtot �
DR � Qtot

4πR2 
From Eq. (4.15), we know a linear, isotropic material has the constitutive relationship
D � εE. Thus, we find E from D.
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(a) In the region R � a,

Qtot � 0 � E � R̂ER � R̂Qtot

4πR2ε
� 0 (V/m) 

(b) In the region a � R � b,

Qtot � Q1 � E � R̂ER � R̂Q1

4πR2ε
(V/m) 

(c) In the region R � b,

Qtot � Q1 	 Q2 � E � R̂ER � R̂
�
Q1 	 Q2 �
4πR2ε

(V/m) 
Problem 4.23 The electric flux density inside a dielectric sphere of radius a
centered at the origin is given by

D � R̂ρ0R (C/m2),

where ρ0 is a constant. Find the total charge inside the sphere.

Solution:

Q � �

�
S

D � ds � � π

θ � 0

� 2π

φ � 0
R̂ρ0R � R̂R2 sinθ dθ dφ ����

R � a� 2πρ0a3
� π

0
sinθ dθ � � 2πρ0a3 cosθ � π0 � 4πρ0a3 (C) 

Problem 4.24 In a certain region of space, the charge density is given in cylindrical
coordinates by the function:

ρv � 50re � r (C/m3 � 
Apply Gauss’s law to find D.

Solution:
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L r

z

Figure P4.24: Gaussian surface.

Method 1: Integral Form of Gauss’s Law

Since ρv varies as a function of r only, so will D. Hence, we construct a cylinder of
radius r and length L, coincident with the z-axis. Symmetry suggests that D has the
functional form D � r̂D. Hence,

�

�
S

D � ds � Q �
�

r̂D � ds � D
�
2πrL � �

Q � 2πL
� r

0
50re � r � r dr

� 100πL � � r2e � r 	 2
�
1 � e � r � 1 	 r � ��� �

D � r̂D � r̂50

�
2
r

�
1 � e � r � 1 	 r � � � re � r � 

Method 2: Differential Method

∇ � D � ρv � D � r̂Dr �
with Dr being a function of r.

1
r

∂
∂r

�
rDr ��� 50re � r �
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∂
∂r

�
rDr ��� 50r2e � r �

� r

0

∂
∂r

�
rDr � dr � � r

0
50r2e � r dr�

rDr � 50 � 2 � 1 � e � r � 1 	 r � � � r2e � r � �
D � r̂rDr � r̂50

�
2
r

�
1 � e � r � 1 	 r � � � re � r � 

Problem 4.25 An infinitely long cylindrical shell extending between r � 1 m and
r � 3 m contains a uniform charge density ρv0. Apply Gauss’s law to find D in all
regions.

Solution: For r � 1 m, D � 0.
For 1

�
r

�
3 m,

�

�
S

r̂Dr � ds � Q �
Dr � 2πrL � ρv0 � πL

�
r2 � 12 � �

D � r̂Dr � r̂
ρv0πL

�
r2 � 1 �

2πrL
� r̂

ρv0
�
r2 � 1 �
2r

� 1
�

r
�

3 m 
For r � 3 m,

Dr � 2πrL � ρv0πL
�
32 � 12 ��� 8ρv0πL �

D � r̂Dr � r̂
4ρv0

r
� r � 3 m 
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L

3m

z

r

1m

Figure P4.25: Cylindrical shell.

Problem 4.26 If the charge density increases linearly with distance from the origin
such that ρv � 0 at the origin and ρv � 40 C/m3 at R � 2 m, find the corresponding
variation of D.

Solution:

ρv
�
R ��� a 	 bR �

ρv
�
0 ��� a � 0 �
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ρv
�
2 ��� 2b � 40 

Hence, b � 20.
ρv
�
R ��� 20R (C/m3) 

Applying Gauss’s law to a spherical surface of radius R,

�

�
S

D � ds � �
V

ρv dV �
DR � 4πR2 � � R

0
20R � 4πR2 dR � 80π

R4

4
�

DR � 5R2 (C/m2) �
D � R̂DR � R̂5R2 (C/m2) 

Section 4-5: Electric Potential

Problem 4.27 A square in the x–y plane in free space has a point charge of 	 Q at
corner

�
a � 2 � a � 2 � and the same at corner

�
a � 2 � � a � 2 � and a point charge of � Q at

each of the other two corners.
(a) Find the electric potential at any point P along the x-axis.
(b) Evaluate V at x � a � 2.

Solution: R1 � R2 and R3 � R4.

V � Q
4πε0R1 	 Q

4πε0R2 	 � Q
4πε0R3 	 � Q

4πε0R4
� Q

2πε0

�
1

R1 � 1
R3



with

R1 � � � x � a
2
� 2 	 � a

2
� 2 �

R3 � � � x 	 a
2
� 2 	 � a

2
� 2 

At x � a � 2,

R1 � a
2
�

R3 � a � 5
2

�
V � Q

2πε0

�
2
a � 2� 5a


 � 0  55Q
πε0a
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-Q

-Q

y

xP(x,0)

R1

R2

R4

R3

Q

Q

a/2-a/2

a/2

-a/2

Figure P4.27: Potential due to four point charges.

Problem 4.28 The circular disk of radius a shown in Fig. 4-7 (P4.28) has uniform
charge density ρs across its surface.

(a) Obtain an expression for the electric potential V at a point P
�
0 � 0 � z � on the

z-axis.
(b) Use your result to find E and then evaluate it for z � h. Compare your final

expression with Eq. (4.24), which was obtained on the basis of Coulomb’s law.

Solution:
(a) Consider a ring of charge at a radial distance r. The charge contained in

width dr is
dq � ρs

�
2πr dr ��� 2πρsr dr

The potential at P is

dV � dq
4πε0R

� 2πρsr dr

4πε0
�
r2 	 z2 � 1 � 2 

The potential due to the entire disk is

V � � a

0
dV � ρs

2ε0

� a

0

r dr�
r2 	 z2 � 1 � 2 � ρs

2ε0

�
r2 	 z2 � 1 � 2 ����

a

0
� ρs

2ε0
� � a2 	 z2 � 1 � 2 � z � 
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z

P(0,0,h)

h

y

x

a

a

r

dr

dq = 2π ρs r drρs

E

Figure P4.28: Circular disk of charge.

(b)

E � � ∇V � � x̂
∂V
∂x � ŷ

∂V
∂y � ẑ

∂V
∂z

� ẑ
ρs

2ε0

�
1 � z� a2 	 z2 � 

The expression for E reduces to Eq. (4.24) when z � h.

Problem 4.29 A circular ring of charge of radius a lies in the x–y plane and is
centered at the origin. If the ring is in air and carries a uniform density ρ l , (a) show
that the electrical potential at

�
0 � 0 � z � is given by V � ρla � � 2ε0

�
a2 	 z2 � 1 � 2 � , and (b)

find the corresponding electric field E.

Solution:
(a) For the ring of charge shown in Fig. P4.29, using Eq. (3.67) in Eq. (4.48c) gives

V
�
R ��� 1

4πε0

�
l �

ρl

R �
dl � � 1

4πε0

� 2π

φ � � 0

ρl� a2 	 r2 � 2ar cos
�
φ � � φ � 	 z2

a dφ � 
Point

�
0 � 0 � z � in Cartesian coordinates corresponds to

�
r� φ � z ��� �

0 � φ � z � in cylindrical
coordinates. Hence, for r � 0,

V
�
0 � 0 � z ��� 1

4πε0

� 2π

φ � � 0

ρl� a2 	 z2
a dφ � � ρla

2ε0 � a2 	 z2
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z

a
dl' = a dφ'

a
0 y

z

x

dφ'

ρl

R'  =   a2 + z2| |

Figure P4.29: Ring of charge.

(b) From Eq. (4.51),

E � � ∇V � � ẑ
ρla
2ε0

∂
∂z

�
a2 	 z2 � � 1 � 2 � ẑ

ρla
2ε0

z�
a2 	 z2 � 3 � 2 (V/m) 

Problem 4.30 Show that the electric potential difference V12 between two points in
air at radial distances r1 and r2 from an infinite line of charge with density ρl along
the z-axis is V12 � �

ρl � 2πε0 � ln � r2 � r1 � .
Solution: From Eq. (4.33), the electric field due to an infinite line of charge is

E � r̂Er � r̂
ρl

2πε0r


Hence, the potential difference is

V12 � � � r1

r2

E � dl � � � r1

r2

r̂ρl

2πε0r
� r̂ dr � ρl

2πε0
ln

�
r2

r1

 

Problem 4.31 Find the electric potential V at a location a distance b from the origin
in the x–y plane due to a line charge with charge density ρl and of length l. The line
charge is coincident with the z-axis and extends from z � � l � 2 to z � l � 2.
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l/2

-l/2

dz

z

b
y

z

R'

V(b)
l

 =   z2 + b2R'  | |

Figure P4.31: Line of charge of length � .

Solution: From Eq. (4.48c), we can find the voltage at a distance b away from a line
of charge [Fig. P4.31]:

V
�
b ��� 1

4πε

�
l �

ρl

R �
dl � � ρl

4πε

� l � 2
� l � 2 dz� z2 	 b2

� ρl

4πε
ln

�
l 	 � l2 	 4b2

� l 	 � l2 	 4b2 � 
Problem 4.32 For the electric dipole shown in Fig. 4-13, d � 1 cm and �E � � 4
(mV/m) at R � 1 m and θ � 0 � . Find E at R � 2 m and θ � 90 � .
Solution: For R � 1 m and θ � 0 � , �E � � 4 mV/m, we can solve for q using Eq. (4.56):

E � qd
4πε0R3

�
R̂2cos θ 	 θ̂θθsin θ � 

Hence,

�E � � �
qd

4πε0

 2 � 4 mV/m at θ � 0 � �

q � 10 � 3 � 8πε0

d
� 10 � 3 � 8πε0

10 � 2 � 0  8πε0 (C) 
Again using Eq. (4.56) to find E at R � 2 m and θ � 90 � , we have

E � 0  8πε0 � 10 � 2

4πε0 � 23

�
R̂
�
0 � 	 θ̂θθ ��� θ̂θθ

1
4

(mV/m) 
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Problem 4.33 For each of the following distributions of the electric potential V ,
sketch the corresponding distribution of E (in all cases, the vertical axis is in volts
and the horizontal axis is in meters):

Solution:

10

-10

E

x

3

30

-30

5 8 11 13 16

V

x

(a)

4.20

-4.20

3 6 9 12 15

E

x

3 6 9 12 15

4

-4

V

x

(b)
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3 6 12 15

2.6

-2.6

x

E

3 6 9 12 15

4

-4

V

x

9

(c)

Figure P4.33: Electric potential distributions of Problem 4.33.

Problem 4.34 Given the electric field

E � R̂
18
R2 (V/m) �

find the electric potential of point A with respect to point B where A is at 	 2 m and
B at � 4 m, both on the z-axis.

Solution:

VAB � VA � VB � � � A

B
E � dl 

Along z-direction, R̂ � ẑ and E � ẑ
18
z2 for z � 0, and R̂ � � ẑ and E � � ẑ

18
z2 for

z
�

0. Hence,

VAB � � � 2

� 4
R̂

18
z2 � ẑ dz � �

� � 0

� 4 � ẑ
18
z2 � ẑ dz 	 � 2

0
ẑ

18
z2 � ẑ dz � � 4 V 
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A

B

z = 2m

z = -4m

Figure P4.34: Potential between B and A.

Problem 4.35 An infinitely long line of charge with uniform density ρl � 9 (nC/m)
lies in the x–y plane parallel to the y-axis at x � 2 m. Find the potential VAB at point
A
�
3 m � 0 � 4 m � in Cartesian coordinates with respect to point B

�
0 � 0 � 0 � by applying

the result of Problem 4.30.

Solution: According to Problem 4.30,

V � ρl

2πε0
ln

�
r2

r1



where r1 and r2 are the distances of A and B. In this case,

r1 � � �
3 � 2 � 2 	 42 � � 17 m �

r2 � 2 m 
Hence,

VAB � 9 � 10 � 9

2π � 8  85 � 10 � 12 ln

�
2� 17


 � � 117  09 V 
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� � � � � �

A(3, 0, 4)

z

4m

r1

B
yr2

2m

3m

x

Figure P4.35: Line of charge parallel to y-axis.

Problem 4.36 The x–y plane contains a uniform sheet of charge with ρs1 � 0  2
(nC/m2 � and a second sheet with ρs2 � � 0  2 (nC/m2) occupies the plane z � 6 m.
Find VAB, VBC, and VAC for A

�
0 � 0 � 6 m � , B

�
0 � 0 � 0 � , and C

�
0 � � 2 m � 2 m � .

Solution: We start by finding the E field in the region between the plates. For any
point above the x–y plane, E1 due to the charge on x–y plane is, from Eq. (4.25),

E1 � ẑ
ρs1

2ε0


In the region below the top plate, E would point downwards for positive ρs2 on the
top plate. In this case, ρs2 � � ρs1 . Hence,

E � E1 	 E2 � ẑ
ρs1

2ε0 � ẑ
ρs2

2ε0
� ẑ

2ρs1

2ε0
� ẑ

ρs1

ε0


Since E is along ẑ, only change in position along z can result in change in voltage.

VAB � � � 6

0
ẑ

ρs1

ε0
� ẑ dz � � ρs1

ε0
z ����

6

0
� � 6ρs1

ε0
� � 6 � 0  2 � 10 � 9

8  85 � 10 � 12 � � 135  59 V 
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A 6 m

B 0

x

z

y

ρs2= - 0.2 (nC/m2)

ρs1
=  0.2 (nC/m2)

C (0, -2, 2)

Figure P4.36: Two parallel planes of charge.

The voltage at C depends only on the z-coordinate of C. Hence, with point A being at
the lowest potential and B at the highest potential,

VBC � � 2
6

VAB � �
� � 135  59 �

3
� 45  20 V �

VAC � VAB 	 VBC � � 135  59 	 45  20 � � 90  39 V 
Section 4-7: Conductors

Problem 4.37 A cylindrical bar of silicon has a radius of 4 mm and a length of 8 cm.
If a voltage of 5 V is applied between the ends of the bar and µe � 0  13 (m2/V � s),
µh � 0  05 (m2/V � s), Ne � 1  5 � 1016 electrons/m3, and Nh � Ne, find

(a) the conductivity of silicon,
(b) the current I flowing in the bar,
(c) the drift velocities ue and uh,
(d) the resistance of the bar, and
(e) the power dissipated in the bar.
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Solution:
(a) Conductivity is given in Eq. (4.65),

σ � �
Neµe 	 Nhµh � e� �
1  5 � 1016 � � 0  13 	 0  05 � � 1  6 � 10 � 19 ��� 4  32 � 10 � 4 (S/m) 

(b) Similarly to Example 4.8, parts b and c,

I � JA � σEA � �
4  32 � 10 � 4 � � 5V

0  08 
 �
π
�
4 � 10 � 3 � 2 ��� 1  36 (µA) 

(c) From Eqs. (4.62a) and (4.62b),

ue � � µeE � � � 0  13 � � 5
0  08 
 E

�E � � � 8  125
E
�E � (m/s) �

uh � µhE � 	 � 0  05 � � 5
0  08 
 E

�E � � 3  125
E
�E � (m/s) 

(d) To find the resistance, we use what we calculated above,

R � V
I
� 5V

1  36 µA
� 3  68 (MΩ) 

(e) Power dissipated in the bar is P � IV � �
5V � � 1  36 µA ��� 6  8 �

µW � 
Problem 4.38 Repeat Problem 4.37 for a bar of germanium with µe � 0  4 (m2/V � s),
µh � 0  2 (m2/V � s), and Ne � Nh � 2  4 � 1019 electrons or holes/m3.

Solution:
(a) Conductivity is given in Eq. (4.65),

σ � �
Neµe 	 Nuµu � e � �

2  4 � 1019 � � 0  4 	 0  2 � � 1  6 � 10 � 19 ��� 2  3 (S/m) 
(b) Similarly to Example 4.8, parts b and c,

I � JA � σEA � �
2  3 � � 5V

0  08 
 �
π
�
4 � 10 � 3 � 2 ��� 7  225 (mA) 

(c) From Eqs. (4.62a) and (4.62b),

ue � � µeE � � � 0  4 �
�

5
0  08 
 E

�E � � � 25
E
�E � (m/s) �

uh � µhE � �
0  2 � � 5

0  08 
 � 12  5 E
�E � (m/s) 
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(d) To find the resistance, we use what we calculated above,

R � V
I
� 5V

7  225 mA
� 0  69 (kΩ) 

(e) Power dissipated in the bar is P � IV � �
5V � � 7  225 mA ��� 36  125 (mW) 

Problem 4.39 A 100-m-long conductor of uniform cross section has a voltage drop
of 4 V between its ends. If the density of the current flowing through it is 1  4 � 106

(A/m2), identify the material of the conductor.

Solution: We know that conductivity characterizes a material:

J � σE � 1  4 � 106 (A/m2) � σ
�

4 (V)
100 (m) 
 � σ � 3  5 � 107 (S/m) 

From Table B-2, we find that aluminum has σ � 3  5 � 107 (S/m).

Problem 4.40 A coaxial resistor of length l consists of two concentric cylinders.
The inner cylinder has radius a and is made of a material with conductivity σ1, and
the outer cylinder, extending between r � a and r � b, is made of a material with
conductivity σ2. If the two ends of the resistor are capped with conducting plates,
show that the resistance between the two ends is R � l � � π � σ1a2 	 σ2

�
b2 � a2 � ��� .

Solution: Due to the conducting plates, the ends of the coaxial resistor are each
uniform at the same potential. Hence, the electric field everywhere in the resistor
will be parallel to the axis of the resistor, in which case the two cylinders can be
considered to be two separate resistors in parallel. Then, from Eq. (4.70),

1
R
� 1

Rinner 	 1
Router

� σ1A1

l1 	 σ2A2

l2
� σ1πa2

l 	 σ2π
�
b2 � a2 �
l

�
or

R � l
π
�
σ1a2 	 σ2

�
b2 � a2 � � (Ω) 

Problem 4.41 Apply the result of Problem 4.40 to find the resistance of a 20-cm-
long hollow cylinder (Fig. P4.41) made of carbon with σ � 3 � 104 (S/m).

Solution: From Problem 4.40, we know that for two concentric cylinders,

R � l
π
�
σ1a2 	 σ2

�
b2 � a2 � � (Ω) 
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3 cm

2 cm

Carbon

Figure P4.41: Cross section of hollow cylinder of Problem 4.41.

For air σ1 � 0 (S/m), σ2 � 3 � 104 (S/m); hence,

R � 0  2
3π � 104

� �
0  03 � 2 � �

0  02 � 2 � � 4  2 (mΩ) 
Problem 4.42 A 2 � 10 � 3-mm-thick square sheet of aluminum has 5 cm � 5 cm
faces. Find:

(a) the resistance between opposite edges on a square face, and
(b) the resistance between the two square faces. (See Appendix B for the electrical

constants of materials).

Solution:
(a)

R � l
σA


For aluminum, σ � 3  5 � 107 (S/m) [Appendix B].

l � 5 cm � A � 5 cm � 2 � 10 � 3 mm � 10 � 10 � 2 � 10 � 6 � 1 � 10 � 7 m2 �
R � 5 � 10 � 2

3  5 � 107 � 1 � 10 � 7 � 14 (mΩ) 
(b) Now, l � 2 � 10 � 3 mm and A � 5 cm � 5 cm � 2  5 � 10 � 3 m2.

R � 2 � 10 � 6

3  5 � 107 � 2  5 � 10 � 3 � 22  8 pΩ 



CHAPTER 4 209

Section 4-9: Boundary Conditions

Problem 4.43 With reference to Fig. 4-19, find E1 if E2 � x̂3 � ŷ2 	 ẑ2 (V/m),
ε1 � 2ε0, ε2 � 18ε0, and the boundary has a surface charge density
ρs � 3  54 � 10 � 11 (C/m2). What angle does E2 make with the z-axis?

Solution: We know that E1t � E2t for any 2 media. Hence, E1t � E2t � x̂3 � ŷ2.
Also,

�
D1 � D2 � � n̂ � ρs (from Table 4.3). Hence, ε1

�
E1 � n̂ � � ε2

�
E2 � n̂ ��� ρs � which

gives

E1z � ρs 	 ε2E2z

ε1
� 3  54 � 10 � 11

2ε0 	 18
�
2 �

2
� 3  54 � 10 � 11

2 � 8  85 � 10 � 12 	 18 � 20 (V/m) 
Hence, E1 � x̂3 � ŷ2 	 ẑ20 (V/m). Finding the angle E2 makes with the z-axis:

E2 � ẑ � �E2 � cos θ � 2 � � 9 	 4 	 4cosθ � θ � cos � 1

�
2� 17


 � 61 � 
Problem 4.44 An infinitely long conducting cylinder of radius a has a surface
charge density ρs. The cylinder is surrounded by a dielectric medium with εr � 4
and contains no free charges. If the tangential component of the electric field in the
region r � a is given by Et � � φ̂φφcos2 φ � r2, find ρs.

Solution: Let the conducting cylinder be medium 1 and the surrounding dielectric
medium be medium 2. In medium 2,

E2 � r̂Er � φ̂φφ
1
r2 cos2 φ �

with Er, the normal component of E2, unknown. The surface charge density is related
to Er. To find Er, we invoke Gauss’s law in medium 2:

∇ � D2 � 0 �
or

1
r

∂
∂r

�
rEr � 	 1

r
∂

∂φ

�
� 1

r2 cos2 φ 
 � 0 �
which leads to

∂
∂r

�
rEr ��� ∂

∂φ

�
1
r2 cos2 φ 
 � � 2

r2 sinφcos φ 
Integrating both sides with respect to r,

� ∂
∂r

�
rEr � dr � � 2sin φcos φ

�
1
r2 dr

rEr � 2
r

sinφcos φ �
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or

Er � 2
r2 sinφcosφ 

Hence,

E2 � r̂
2
r2 sinφcos φ � φ̂φφ

1
r2 cos2 φ 

According to Eq. (4.93),
n̂2 � � D1 � D2 ��� ρs �

where n̂2 is the normal to the boundary and points away from medium 1. Hence,
n̂2 � r̂. Also, D1 � 0 because the cylinder is a conductor. Consequently,

ρs � � r̂ � D2 � r � a� � r̂ � ε2E2 � r � a

� � r̂ � εrε0

�
r̂

2
r2 sin φcosφ � φ̂φφ

1
r2 cos2 φ � ����

r � a� � 8ε0

a2 sinφcos φ (C/m2) 
Problem 4.45 A 2-cm conducting sphere is embedded in a charge-free dielectric
medium with ε2r � 9. If E2 � R̂3cos θ � θ̂θθ3sinθ (V/m) in the surrounding region,
find the charge density on the sphere’s surface.

Solution: According to Eq. (4.93),

n̂2 � � D1 � D2 ��� ρs 
In the present case, n̂2 � R̂ and D1 � 0. Hence,

ρs � � R̂ � D2 � r � 2 cm� � R̂ � ε2
�
R̂ 3cos θ � θ̂θθ3sin θ �� � 27ε0 cosθ (C/m2) 

Problem 4.46 If E � R̂150 (V/m) at the surface of a 5-cm conducting sphere
centered at the origin, what is the total charge Q on the sphere’s surface?

Solution: From Table 4-3, n̂ � � D1 � D2 ��� ρs. E2 inside the sphere is zero, since we
assume it is a perfect conductor. Hence, for a sphere with surface area S � 4πa2,

D1R � ρs � E1R � ρs

ε0
� Q

Sε0
�
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Q � ERSε0 � �
150 � 4π

�
0  05 � 2ε0 � 3πε0

2
(C) 

Problem 4.47 Figure 4-34(a) (P4.47) shows three planar dielectric slabs of equal
thickness but with different dielectric constants. If E0 in air makes an angle of 45 �
with respect to the z-axis, find the angle of E in each of the other layers.

ε3 = 7ε0

ε2 = 5ε0

ε1 = 3ε0

ε0 (air)

ε0 (air)
45°

z

E0

Figure P4.47: Dielectric slabs in Problem 4.47.

Solution: Labeling the upper air region as region 0 and using Eq. (4.99),

θ1 � tan � 1

�
ε1

ε0
tanθ0 
 � tan � 1 � 3tan 45 � ��� 71  6 � �

θ2 � tan � 1

�
ε2

ε1
tanθ1 
 � tan � 1

�
5
3

tan71  6 � 
 � 78  7 � �
θ3 � tan � 1

�
ε3

ε2
tanθ2 
 � tan � 1

�
7
5

tan78  7 � 
 � 81  9 � 
In the lower air region, the angle is again 45 � .
Sections 4-10 and 4-11: Capacitance and Electrical Energy

Problem 4.48 Determine the force of attraction in a parallel-plate capacitor with
A � 5 cm2, d � 2 cm, and εr � 4 if the voltage across it is 50 V.
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Solution: From Eq. (4.131),

F � � ẑ
εA �E � 2

2
� � ẑ2ε0

�
5 � 10 � 4 � � 50

0  02 
 2 � � ẑ55  3 � 10 � 9 (N) 
Problem 4.49 Dielectric breakdown occurs in a material whenever the magnitude
of the field E exceeds the dielectric strength anywhere in that material. In the coaxial
capacitor of Example 4-12,

(a) At what value of r is �E � maximum?
(b) What is the breakdown voltage if a � 1 cm, b � 2 cm, and the dielectric

material is mica with εr � 6?

Solution:
(a) From Eq. (4.114), E � � r̂ρl � 2πεr for a � r � b. Thus, it is evident that �E � is

maximum at r � a.
(b) The dielectric breaks down when �E � � 200 (MV/m) (see Table 4-2), or

�E � � ρl

2πεr
� ρl

2π
�
6ε0 � � 10 � 2 � � 200 (MV/m) �

which gives ρl � �
200 MV/m � � 2π � 6 � 8  854 � 10 � 12 � � 0  01 ��� 667  6 �

µC/m).
From Eq. (4.115), we can find the voltage corresponding to that charge density,

V � ρl

2πε
ln

�
b
a 
 � �

667  6µC/m �
12π

�
8  854 � 10 � 12 F/m � ln

�
2 ��� 1  39 (MV) 

Thus, V � 1  39 (MV) is the breakdown voltage for this capacitor.

Problem 4.50 An electron with charge Qe � � 1  6 � 10 � 19 C and mass
me � 9  1 � 10 � 31 kg is injected at a point adjacent to the negatively charged plate in
the region between the plates of an air-filled parallel-plate capacitor with separation
of 1 cm and rectangular plates each 10 cm2 in area Fig. 4-33 (P4.50). If the voltage
across the capacitor is 10 V, find

(a) the force acting on the electron,
(b) the acceleration of the electron, and
(c) the time it takes the electron to reach the positively charged plate, assuming

that it starts from rest.

Solution:
(a) The electric force acting on a charge Qe is given by Eq. (4.14) and the electric

field in a capacitor is given by Eq. (4.112). Combining these two relations, we have

F � QeE � Qe
V
d
� � 1  6 � 10 � 19 10

0  01
� � 1  6 � 10 � 16 (N) 
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Qe

1 cm

V0 = 10 V
+-

Figure P4.50: Electron between charged plates of Problem 4.50.

The force is directed from the negatively charged plate towards the positively charged
plate.

(b)

a � F
m
� 1  6 � 10 � 16

9  1 � 10 � 31
� 1  76 � 1014 (m/s2) 

(c) The electron does not get fast enough at the end of its short trip for relativity to
manifest itself; classical mechanics is adequate to find the transit time. From classical
mechanics, d � d0 	 u0t 	 1

2at2, where in the present case the start position is d0 � 0,
the total distance traveled is d � 1 cm, the initial velocity u0 � 0, and the acceleration
is given by part (b). Solving for the time t,

t � �
2d
a
� �

2 � 0  01
1  76 � 1014 � 10  7 � 10 � 9 s � 10  7 (ns) 

Problem 4.51 In a dielectric medium with εr � 4, the electric field is given by

E � x̂
�
x2 	 2z � 	 ŷx2 � ẑ

�
y 	 z � (V/m) 

Calculate the electrostatic energy stored in the region � 1 m
�

x
�

1 m, 0
�

y
�

2 m,
and 0

�
z

�
3 m.
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Solution: Electrostatic potential energy is given by Eq. (4.124),

We � 1
2

�
V

ε �E � 2 dV � ε
2

� 3

z � 0

� 2

y � 0

� 1

x � � 1
� � x2 	 2z � 2 	 x4 	 �

y 	 z � 2 � dx dy dz

� 4ε0

2

�� �� �
2
5

x5yz 	 2
3

z2x3y 	 4
3

z3xy 	 1
12

�
y 	 z � 4x 
 �����

1

x � � 1

��
�����

2

y � 0

��
�����

3

z � 0

� 4ε0

2

�
1304

5 
 � 4  62 � 10 � 9 (J) 
Problem 4.52 Figure 4-34a (P4.52(a)) depicts a capacitor consisting of two
parallel, conducting plates separated by a distance d. The space between the plates

(a)

(b)

ε1

A1 A2

ε2d

+

-
V

C1 C2
V

+

-

Figure P4.52: (a) Capacitor with parallel dielectric section, and (b) equivalent circuit.

contains two adjacent dielectrics, one with permittivity ε1 and surface area A1

and another with ε2 and A2. The objective of this problem is to show that the
capacitance C of the configuration shown in Fig. 4-34a (P4.52(a)) is equivalent to
two capacitances in parallel, as illustrated in Fig. 4-34b (P4.52(b)), with

C � C1 	 C2 � (4.132)
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where

C1 � ε1A1

d
� (4.133)

C2 � ε2A2

d
 (4.134)

To this end, you are asked to proceed as follows:
(a) Find the electric fields E1 and E2 in the two dielectric layers.
(b) Calculate the energy stored in each section and use the result to calculate C1

and C2.
(c) Use the total energy stored in the capacitor to obtain an expression for C. Show

that Eq. (4.132) is indeed a valid result.

Solution:

V
+

-

(c)

E1 E2

ε2

d

ε1

Figure P4.52: (c) Electric field inside of capacitor.

(a) Within each dielectric section, E will point from the plate with positive voltage
to the plate with negative voltage, as shown in Fig. P4-52(c). From V � Ed,

E1 � E2 � V
d


(b)

We1 � 1
2

ε1E2
1 � V � 1

2
ε1

V 2

d2 � A1d � 1
2

ε1V 2 A1

d


But, from Eq. (4.121),

We1 � 1
2

C1V
2 

Hence C1 � ε1
A1

d
. Similarly, C2 � ε2

A2

d
.

(c) Total energy is

We � We1 	 We2 � 1
2

V 2

d

�
ε1A1 	 ε2A2 ��� 1

2
CV 2 
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Hence,

C � ε1A1

d 	 ε2A2

d
� C1 	 C2 

Problem 4.53 Use the result of Problem 4.52 to determine the capacitance for each
of the following configurations:

(a) conducting plates are on top and bottom faces of rectangular structure in Fig.
4-35(a) (P4.53(a)),

(b) conducting plates are on front and back faces of structure in Fig. 4-35(a)
(P4.53(a)),

(c) conducting plates are on top and bottom faces of the cylindrical structure in
Fig. 4-35(b) (P4.53(b)).

Solution:
(a) The two capacitors share the same voltage; hence they are in parallel.

C1 � ε1
A1

d
� 2ε0

�
5 � 1 ��� 10 � 4

2 � 10 � 2 � 5ε0 � 10 � 2 �
C2 � ε2

A2

d
� 4ε0

�
5 � 3 ��� 10 � 4

2 � 10 � 2 � 30ε0 � 10 � 2 �
C � C1 	 C2 � �

5ε0 	 30ε0 ��� 10 � 2 � 0  35ε0 � 3  1 � 10 � 12 F 
(b)

C1 � ε1
A1

d
� 2ε0

�
2 � 1 ��� 10 � 4

5 � 10 � 2 � 0  8ε0 � 10 � 2 �
C2 � ε2

A2

d
� 4ε0

�
3 � 2 ��� 10 � 4

5 � 10 � 2 � 24
5

ε0 � 10 � 2 �
C � C1 	 C2 � 0  5 � 10 � 12 F 

(c)

C1 � ε1
A1

d
� 8ε0

�
πr2

1 �
2 � 10 � 2 � 4πε0

10 � 2

�
2 � 10 � 3 � 2 � 0  04 � 10 � 12 F �

C2 � ε2
A2

d
� 4ε0

�
π
�
r2

2 � r2
1 �

2 � 10 � 2
� 2πε0

10 � 2
� � 4 � 10 � 3 � 2 � �

2 � 10 � 3 � 2 � � 0  06 � 10 � 12 F �
C3 � ε3

A3

d
� 2ε0

�
π
�
r2

3 � r2
2 �

2 � 10 � 2 � πε0

10 � 2 � � 8 � 10 � 3 � 2 � �
4 � 10 � 3 � 2 � � 0  12 � 10 � 12 F �

C � C1 	 C2 	 C3 � 0  22 � 10 � 12 F 
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(a)

3 cm

5 cm

1 cm

2 cm

εr = 2 εr = 4

2 cm

ε3 ε2

r1 = 2mm

r2 = 4mm

r3 = 8mm

ε1 = 8ε0; ε2 = 4ε0; ε3 = 2ε0

ε1

(b)

Figure P4.53: Dielectric sections for Problems 4.53 and 4.55.
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Problem 4.54 The capacitor shown in Fig. 4-36 (P4.54) consists of two parallel
dielectric layers. We wish to use energy considerations to show that the equivalent
capacitance of the overall capacitor, C, is equal to the series combination of the
capacitances of the individual layers, C1 and C2, namely

C � C1C2

C1 	 C2
� (4.136)

where

C1 � ε1
A
d1

� C2 � ε2
A
d2



C1

C2

V
+

-

(a)

(b)

d1

d2

+

-
V

A

ε 1

ε 2

Figure P4.54: (a) Capacitor with parallel dielectric layers, and (b) equivalent circuit
(Problem 4.54).

(a) Let V1 and V2 be the electric potentials across the upper and lower dielectrics,
respectively. What are the corresponding electric fields E1 and E2? By
applying the appropriate boundary condition at the interface between the two
dielectrics, obtain explicit expressions for E1 and E2 in terms of ε1, ε2, V , and
the indicated dimensions of the capacitor.

(b) Calculate the energy stored in each of the dielectric layers and then use the sum
to obtain an expression for C.
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+

- VE1

E2

ε1

ε1

V1

+

-

V1

+

-

d1

d2

Figure P4.54: (c) Electric fields inside of capacitor.

(c) Show that C is given by Eq. (4.136).

Solution:
(a) If V1 is the voltage across the top layer and V2 across the bottom layer, then

V � V1 	 V2 �
and

E1 � V1

d1
� E2 � V2

d2


According to boundary conditions, the normal component of D is continuous across
the boundary (in the absence of surface charge). This means that at the interface
between the two dielectric layers,

D1n � D2n

or
ε1E1 � ε2E2 

Hence,

V � E1d1 	 E2d2 � E1d1 	 ε1E1

ε2
d2 �

which can be solved for E1:

E1 � V

d1 	 ε1

ε2
d2


Similarly,

E2 � V

d2 	 ε2

ε1
d1
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(b)

We1 � 1
2

ε1E2
1 � V 1 � 1

2
ε1

���
V

d1 	 ε1

ε2
d2

�
�� 2

� Ad1 � 1
2

V 2

�
ε1ε2

2Ad1�
ε2d1 	 ε1d2 � 2 � �

We2 � 1
2

ε2E2
2 � V 2 � 1

2
ε2

���
V

d2 	 ε2

ε1
d1

�
�� 2

� Ad2 � 1
2

V 2

�
ε2

1ε2Ad2�
ε1d2 	 ε2d1 � 2 � �

We � We1 	 We2 � 1
2

V 2

�
ε1ε2

2Ad1 	 ε2
1ε2Ad2�

ε1d2 	 ε2d1 � 2 � 
But We � 1

2 CV 2, hence,

C � ε1ε2
2Ad1 	 ε2

1ε2Ad2�
ε2d1 	 ε1d2 � 2 � ε1ε2A

�
ε2d1 	 ε1d2 ��
ε2d1 	 ε1d2 � 2 � ε1ε2A

ε2d1 	 ε1d2


(c) Multiplying numerator and denominator of the expression for C by A � d1d2, we
have

C � ε1A
d1
� ε2A

d2
ε1A
d1 	 ε2A

d2

� C1C2

C1 	 C2
�

where

C1 � ε1A
d1

� C2 � ε2A
d2


Problem 4.55 Use the expressions given in Problem 4.54 to determine the
capacitance for the configurations in Fig. 4.35(a) (P4.55) when the conducting plates
are placed on the right and left faces of the structure.

Solution:

C1 � ε1
A
d1

� 2ε0

�
2 � 5 ��� 10 � 4

1 � 10 � 2 � 20ε0 � 10 � 2 � 1  77 � 10 � 12 F �
C2 � ε2

A
d2

� 4ε0

�
2 � 5 ��� 10 � 4

3 � 10 � 2 � 1  18 � 10 � 12 F �
C � C1C2

C1 	 C2
� 1  77 � 1  18

1  77 	 1  18
� 10 � 12 � 0  71 � 10 � 12 F 
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3 cm

5 cm

1 cm

2 cm

εr = 2 εr = 4

Figure P4.55: Dielectric section for Problem 4.55.

Section 4-12: Image Method

Problem 4.56 With reference to Fig. 4-37 (P4.56), charge Q is located at a
distance d above a grounded half-plane located in the x–y plane and at a distance d
from another grounded half-plane in the x–z plane. Use the image method to

(a) establish the magnitudes, polarities, and locations of the images of charge Q
with respect to each of the two ground planes (as if each is infinite in extent),
and

(b) then find the electric potential and electric field at an arbitrary point P
�
0 � y � z � .

d

d

z

y

P(0, y, z)

Q(0, d, d)

Figure P4.56: Charge Q next to two perpendicular, grounded, conducting half planes.

Solution:
(a) The original charge has magnitude and polarity 	 Q at location

�
0 � d � d � . Since

the negative y-axis is shielded from the region of interest, there might as well be a
conducting half-plane extending in the � y direction as well as the 	 y direction. This
ground plane gives rise to an image charge of magnitude and polarity � Q at location
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d

d-d
-d

z

y

P(y, z)Q-Q

-QQ

Figure P4.56: (a) Image charges.

�
0 � d � � d � . In addition, since charges exist on the conducting half plane in the 	 z

direction, an image of this conducting half plane also appears in the � z direction.
This ground plane in the x-z plane gives rise to the image charges of � Q at

�
0 � � d � d �

and 	 Q at
�
0 � � d � � d � .

(b) Using Eq. (4.47) with N � 4,

V
�
x � y � z ��� Q

4πε

�
1

� x̂x 	 ŷ
�
y � d � 	 ẑ

�
z � d � � � 1

� x̂x 	 ŷ
�
y 	 d � 	 ẑ

�
z � d � �

	 1
� x̂x 	 ŷ

�
y 	 d � 	 ẑ

�
z 	 d � � � 1

� x̂x 	 ŷ
�
y � d � 	 ẑ

�
z 	 d � � 


� Q
4πε

��
1

� x2 	 �
y � d � 2 	 �

z � d � 2 � 1

� x2 	 �
y 	 d � 2 	 �

z � d � 2
	 1

� x2 	 �
y 	 d � 2 	 �

z 	 d � 2 � 1

� x2 	 �
y � d � 2 	 �

z 	 d � 2
��

� Q
4πε

�
1

� x2 	 y2 � 2yd 	 z2 � 2zd 	 2d2

� 1

� x2 	 y2 	 2yd 	 z2 � 2zd 	 2d2

	 1

� x2 	 y2 	 2yd 	 z2 	 2zd 	 2d2

� 1

� x2 	 y2 � 2yd 	 z2 	 2zd 	 2d2 � (V) 
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From Eq. (4.51),

E � � ∇V

� Q
4πε

��
∇

1

� x2 	 �
y � d � 2 	 �

z � d � 2 � ∇
1

� x2 	 �
y 	 d � 2 	 �

z � d � 2
	 ∇

1

� x2 	 �
y 	 d � 2 	 �

z 	 d � 2 � ∇
1

� x2 	 �
y � d � 2 	 �

z 	 d � 2
��

� Q
4πε

�
x̂x 	 ŷ

�
y � d � 	 ẑ

�
z � d ��

x2 	 �
y � d � 2 	 �

z � d � 2 � 3 � 2 � x̂x 	 ŷ
�
y 	 d � 	 ẑ

�
z � d ��

x2 	 �
y 	 d � 2 	 �

z � d � 2 � 3 � 2
	 x̂x 	 ŷ

�
y 	 d � 	 ẑ

�
z 	 d ��

x2 	 �
y 	 d � 2 	 �

z 	 d � 2 � 3 � 2 � x̂x 	 ŷ
�
y � d � 	 ẑ

�
z 	 d ��

x2 	 �
y � d � 2 	 �

z 	 d � 2 � 3 � 2 � (V/m) 
Problem 4.57 Conducting wires above a conducting plane carry currents I1 and
I2 in the directions shown in Fig. 4-38 (P4.57). Keeping in mind that the direction

I1

I2

(a) (b)

Figure P4.57: Currents above a conducting plane (Problem 4.57).

of a current is defined in terms of the movement of positive charges, what are the
directions of the image currents corresponding to I1 and I2?

Solution:
(a) In the image current, movement of negative charges downward � movement of

positive charges upward. Hence, image of I1 is same as I1.
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I1

+ q @ t=t1

+ q @ t=0

- q @ t=0

- q @ t=t1

I1

(image)

Figure P4.57: (a) Solution for part (a).

(b) In the image current, movement of negative charges to right � movement of
positive charges to left.

I1

+ q @ t=t1
+ q 

- q - q @ t=t1

I1 (image)

@t=0

@t=0

Figure P4.57: (b) Solution for part (b).

Problem 4.58 Use the image method to find the capacitance per unit length of an
infinitely long conducting cylinder of radius a situated at a distance d from a parallel
conducting plane, as shown in Fig. 4-39 (P4.58).

Solution: Let us distribute charge ρl (C/m) on the conducting cylinder. Its image
cylinder at z � � d will have charge density � ρl.

For the line at z � d, the electric field at any point z (at a distance of d � z from the
center of the cylinder) is, from Eq. (4.33),

E1 � � ẑ
ρl

2πε0
�
d � z �



CHAPTER 4 225

V  = 0

a

d

Figure P4.58: Conducting cylinder above a conducting plane (Problem 4.58).

ρl

z

−ρl

d

a

d

a

Figure P4.58: (a) Cylinder and its image.

where � ẑ is the direction away from the cylinder. Similarly for the image cylinder at
distance

�
d 	 z � and carrying charge � ρl ,

E2 � ẑ
� � ρl �

2πε0
�
d 	 z � � � ẑ

ρl

2πε0
�
d 	 z � 

The potential difference between the cylinders is obtained by integrating the total
electric field from z � � � d � a � to z � �

d � a � :
V � � � 1

2

�
E1 	 E2 � � ẑ dz

� � � d � a

� � d � a � � ẑ
ρl

2πε0

�
1

d � z 	 1
d 	 z 
 � ẑ dz
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� ρl

2πε0

� d � a

� � d � a �

�
1

d � z 	 1
d 	 z 
 dz

� ρl

2πε0
� � ln

�
d � z � 	 ln

�
d 	 z ��� d � a� � d � a �

� ρl

2πε0
� � ln

�
a � 	 ln

�
2d � a � 	 ln

�
2d � a � � ln

�
a ���

� ρl

πε0
ln

�
2d � a

a 
 
For a length L, Q � ρlL and

C � Q
V
� ρlL�

ρl � πε0 � ln � � 2d � a � � a � �
and the capacitance per unit length is

C � � C
L
� πε0

ln � � 2d � a � � 1 � (C/m) 
Problem 4.59 A circular beam of charge of radius a consists of electrons moving
with a constant speed u along the 	 z direction. The beam’s axis is coincident with
the z-axis and the electron charge density is given by

ρv � � cr2 (c/m3)

where c is a constant and r is the radial distance from the axis of the beam.

(a) Determine the charge density per unit length.

(b) Determine the current crossing the z-plane.

Solution:
(a)

ρl � �
ρv ds

� � a

r � 0

� 2π

φ � 0 � cr2 � r dr dφ � � 2πc
r4

4 ����

a

0
� � πca4

2
(C/m) 
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(b)

J � ρvu � � ẑcr2u (A/m2)

I � �
J � ds

� � a

r � 0

� 2π

φ � 0

� � ẑcur2 ��� ẑr dr dφ

� � 2πcu
� a

0
r3 dr � � πcua4

2
� ρlu  (A) 

Problem 4.60 A line of charge of uniform density ρl occupies a semicircle of
radius b as shown in the figure. Use the material presented in Example 4-4 to
determine the electric field at the origin.

x

y

z

b

z

ρl

Solution: Since we have only half of a circle, we need to integrate the expression for
dE1 given in Example 4-4 over φ from 0 to π. Before we do that, however, we need
to set h � 0 (the problem asks for E at the origin). Hence,

dE1 � ρlb
4πε0

� � r̂b 	 ẑh ��
b2 	 h2 � 3 � 2 dφ ����

h � 0� � r̂ρl

4πε0b
dφ

E1 � � π

φ � 0
dE1 � � � r̂ρl

4ε0b


Problem 4.61 A spherical shell with outer radius b surrounds a charge-free cavity
of radius a � b. If the shell contains a charge density given by

ρv � � ρv0

R2 � a
�

R
�

b �
where ρv0 is a positive constant, determine D in all regions.
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b

r2

r1

r3

a
ρv

Solution: Symmetry dictates that D is radially oriented. Thus,

D � R̂DR 
At any R, Gauss’s law gives

�

�
S

D � ds � Q
�

S
R̂DR � R̂ ds � Q

4πR2DR � Q

DR � Q
4πR2 

(a) For R � a, no charge is contained in the cavity. Hence, Q � 0, and

DR � 0 � R
�

a 
(b) For a

�
R

�
b,

Q � � R

R � a
ρv dV � � R

R � a � ρv0

R2 � 4πR2 dR

� � 4πρv0
�
R � a � 

Hence,

DR � � ρv0
�
R � a �
R2 � a

�
R

�
b 
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(c) For R � b,

Q � � b

R � a
ρv dV � � 4πρv0

�
b � a �

DR � � ρv0
�
b � a �
R2 � R � b 

Problem 4.62 Two infinite lines of charge, both parallel to the z-axis, lie in the x–z
plane, one with density ρl and located at x � a and the other with density � ρl and
located at x � � a. Obtain an expression for the electric potential V

�
x � y � at a point

P
�
x � y � relative to the potential at the origin.

x

y

(a, 0)(-a, 0)

P(x,y)

� �� �-ρl ρl

r'r''

Solution: According to the result of Problem 4.30, the electric potential difference
between a point at a distance r1 and another at a distance r2 from a line charge of
density ρl is

V � ρl

2πε0
ln

�
r2

r1

 

Applying this result to the line charge at x � a, which is at a distance a from the
origin:

V � � ρl

2πε0
ln � a

r �
� �

r2 � a and r1 � r � �
� ρl

2πε0
ln

�
a

� �
x � a � 2 	 y2 � 

Similarly, for the negative line charge at x � � a,

V � � � � ρl

2πε0
ln � a

r � �
� �

r2 � a and r1 � r � �
� � ρl

2πε0
ln

�
a

� �
x 	 a � 2 	 y2 � 
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The potential due to both lines is

V � V � 	 V � � � ρl

2πε0

�
ln

�
a

� �
x � a � 2 	 y2 � � ln

�
a

� �
x 	 a � 2 	 y2 � � 

At the origin, V � 0, as it should be since the origin is the reference point. The
potential is also zero along all points on the y-axis (x � 0).

Problem 4.63 A cylinder-shaped carbon resistor is 8 cm in length and its circular
cross section has a diameter d � 1 mm.

(a) Determine the resistance R.

(b) To reduce its resistance by 40%, the carbon resistor is coated with a layer of
copper of thickness t. Use the result of Problem 4.40 to determine t.

Solution:
(a) From (4.70), and using the value of σ for carbon from Appendix B,

R � l
σA

� l
σπ

�
d � 2 � 2 � 8 � 10 � 2

3 � 104π
�
10 � 3 � 2 � 2 � 3  4 Ω 

(b) The 40%-reduced resistance is:

R � � 0  6R � 0  6 � 3  4 � 2  04 Ω 
Using the result of Problem 4.40:

R � � l
π
�
σ1a2 	 σ2

�
b2 � a2 � � � 2  04 Ω 

With σ1 � 3  4 � 104 S/m (carbon), σ2 � 5  8 � 107 S/m (copper), a � 1 mm � 2 �
5 � 10 � 4 m, and b unknown, we have

b � 5  00086 � 10 � 4 m

and

t � b � a � �
5  00086 � 5 ��� 10 � 4

� 0  00086 � 10 � 4 m � 0  086 µm 
Thus, the addition of a copper coating less than 0.1 µm in thickness reduces the
resistance by 40%.
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Problem 4.64 A coaxial capacitor consists of two concentric, conducting,
cylindrical surfaces, one of radius a and another of radius b, as shown in the figure.
The insulating layer separating the two conducting surfaces is divided equally into
two semi-cylindrical sections, one filled with dielectric ε1 and the other filled with
dielectric ε2.

a

b

l

E +
+

- +
V

ε1

ε2

(a) Develop an expression for C in terms of the length l and the given quantities.

(b) Evaluate the value of C for a � 2 mm, b � 6 mm, εr1 � 2, εr2 � 4, and
l � 4 cm.

Solution:
(a) For the indicated voltage polarity, the E field inside the capacitor exists in only

the dielectric materials and points radially inward. Let E1 be the field in dielectric ε1

and E2 be the field in dielectric ε2. At the interface between the two dielectric
sections, E1 is parallel to E2 and both are tangential to the interface. Since boundary
conditions require that the tangential components of E1 and E2 be the same, it follows
that:

E1 � E2 � � r̂E 
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At r � a (surface of inner conductor), in medium 1, the boundary condition on D, as
stated by (4.101), leads to

D1 � ε1E1 � n̂ρs1

� r̂ε1E � r̂ρs1

or
ρs1 � � ε1E 

Similarly, in medium 2
ρs2 � � ε2E 

Thus, the E fields will be the same in the two dielectrics, but the charge densities will
be different along the two sides of the inner conducting cylinder.

Since the same voltage applies for the two sections of the capacitor, we can treat
them as two capacitors in parallel. For the capacitor half that includes dielectric ε1,
we can apply the results of Eqs. (4.114)–(4.116), but we have to keep in mind that Q
is now the charge on only one half of the inner cylinder. Hence,

C1 � πε1l
ln
�
b � a � 

Similarly,

C2 � πε2l
ln
�
b � a � �

and

C � C1 	 C2 � πl
�
ε1 	 ε2 �

ln
�
b � a � 

(b)

C � π � 4 � 10 � 2 � 2 	 4 ��� 8  85 � 10 � 12

ln
�
6 � 2 �� 6  07 pF.




